Ansys fluent руководство пользователя

vk.com/club152685050 | vk.com/id446425943

ANSYS, Inc.

Release 2019 R1

Southpointe

January 2019

2600 ANSYS Drive

Canonsburg, PA 15317

ANSYS, Inc. and

ansysinfo@ansys.com

ANSYS Europe,

http://www.ansys.com

Ltd. are UL

registered ISO

(T) 724-746-3304

9001: 2015

(F) 724-514-9494

companies.

vk.com/club152685050 | vk.com/id446425943

Copyright and Trademark Information

© 2018 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners. FLEXlm and FLEXnet are trademarks of Flexera Software LLC.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products

and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001: 2015 companies.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.

Published in the U.S.A.

vk.com/club152685050 | vk.com/id446425943

Table of Contents

Using This Manual ……………………………………………………………………………………………………………………..

xxi

1. What’s In This Manual …………………………………………………………………………………………………………

xxi

2. How To Use This Manual ……………………………………………………………………………………………………..

xxi

2.1. For the Beginner ………………………………………………………………………………………………………..

xxi

2.2. For the Experienced User …………………………………………………………………………………………….

xxi

3.Typographical Conventions Used In This Manual ……………………………………………………………………..

xxi

1. Fluid Flow in an Exhaust Manifold …………………………………………………………………………………………….

1

1.1. Introduction …………………………………………………………………………………………………………………….

1

1.2. Prerequisites …………………………………………………………………………………………………………………….

2

1.3. Problem Description ………………………………………………………………………………………………………….

2

1.4. Setup and Solution ……………………………………………………………………………………………………………

2

1.4.1. Preparation ………………………………………………………………………………………………………………

3

1.4.2. Meshing Workflow …………………………………………………………………………………………………….

3

1.4.3. General Settings ………………………………………………………………………………………………………

15

1.4.4. Solver Settings ………………………………………………………………………………………………………..

15

1.4.5. Models …………………………………………………………………………………………………………………..

16

1.4.6. Materials ………………………………………………………………………………………………………………..

16

1.4.7. Cell Zone Conditions ………………………………………………………………………………………………..

16

1.4.8. Boundary Conditions ……………………………………………………………………………………………….

17

1.4.9. Solution …………………………………………………………………………………………………………………

19

1.4.10. Postprocessing ………………………………………………………………………………………………………

26

1.5. Summary ……………………………………………………………………………………………………………………….

33

2. Fluid Flow and Heat Transfer in a Mixing Elbow ………………………………………………………………………..

35

2.1. Introduction …………………………………………………………………………………………………………………..

35

2.2. Prerequisites …………………………………………………………………………………………………………………..

35

2.3. Problem Description ………………………………………………………………………………………………………..

35

2.4. Setup and Solution ………………………………………………………………………………………………………….

36

2.4.1. Preparation …………………………………………………………………………………………………………….

37

2.4.2. Launching ANSYS Fluent …………………………………………………………………………………………..

37

2.4.3. Reading the Mesh ……………………………………………………………………………………………………

40

2.4.4. Setting Up Domain …………………………………………………………………………………………………..

43

2.4.5. Setting Up Physics ……………………………………………………………………………………………………

46

2.4.6. Solving ………………………………………………………………………………………………………………….

58

2.4.7. Displaying the Preliminary Solution …………………………………………………………………………….

68

2.4.8. Adapting the Mesh …………………………………………………………………………………………………..

80

2.5. Summary ……………………………………………………………………………………………………………………….

93

3. Postprocessing ……………………………………………………………………………………………………………………..

95

3.1. Introduction …………………………………………………………………………………………………………………..

95

3.2. Prerequisites …………………………………………………………………………………………………………………..

96

3.3. Problem Description ………………………………………………………………………………………………………..

96

3.4. Setup and Solution ………………………………………………………………………………………………………….

96

3.4.1. Preparation …………………………………………………………………………………………………………….

97

3.4.2. Reading the Mesh ……………………………………………………………………………………………………

97

3.4.3. Manipulating the Mesh in the Viewer …………………………………………………………………………..

97

3.4.4. Adding Lights …………………………………………………………………………………………………………

99

3.4.5. Creating Isosurfaces ……………………………………………………………………………………………….

103

3.4.6. Generating Contours ………………………………………………………………………………………………

106

3.4.7. Generating Velocity Vectors ……………………………………………………………………………………..

110

3.4.8. Creating an Animation ……………………………………………………………………………………………

115

3.4.9. Displaying Pathlines ……………………………………………………………………………………………….

119

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

iii

vk.com/club152685050Tutorial Guide | vk.com/id446425943

3.4.10. Creating a Scene With Vectors and Contours ……………………………………………………………..

124

3.4.11. Advanced Overlay of Pathlines on a Scene ………………………………………………………………..

126

3.4.12. Creating Exploded Views ……………………………………………………………………………………….

128

3.4.13. Animating the Display of Results in Successive Streamwise Planes …………………………………

133

3.4.14. Generating XY Plots ………………………………………………………………………………………………

135

3.4.15. Creating Annotation ……………………………………………………………………………………………..

138

3.4.16. Saving Picture Files ……………………………………………………………………………………………….

140

3.4.17. Generating Volume Integral Reports ………………………………………………………………………..

141

3.5. Summary ……………………………………………………………………………………………………………………..

141

4. Modeling Periodic Flow and Heat Transfer ……………………………………………………………………………..

143

4.1. Introduction …………………………………………………………………………………………………………………

143

4.2. Prerequisites …………………………………………………………………………………………………………………

143

4.3. Problem Description ………………………………………………………………………………………………………

144

4.4. Setup and Solution ………………………………………………………………………………………………………..

144

4.4.1. Preparation …………………………………………………………………………………………………………..

145

4.4.2. Mesh ……………………………………………………………………………………………………………………

145

4.4.3. General Settings …………………………………………………………………………………………………….

148

4.4.4. Models …………………………………………………………………………………………………………………

148

4.4.5. Materials ………………………………………………………………………………………………………………

148

4.4.6. Cell Zone Conditions ………………………………………………………………………………………………

150

4.4.7. Periodic Conditions ………………………………………………………………………………………………..

151

4.4.8. Boundary Conditions ………………………………………………………………………………………………

151

4.4.9. Solution ……………………………………………………………………………………………………………….

152

4.4.10. Postprocessing …………………………………………………………………………………………………….

157

4.5. Summary ……………………………………………………………………………………………………………………..

165

4.6. Further Improvements ……………………………………………………………………………………………………

165

5. Modeling External Compressible Flow …………………………………………………………………………………..

167

5.1. Introduction …………………………………………………………………………………………………………………

167

5.2. Prerequisites …………………………………………………………………………………………………………………

167

5.3. Problem Description ………………………………………………………………………………………………………

167

5.4. Setup and Solution ………………………………………………………………………………………………………..

168

5.4.1. Preparation …………………………………………………………………………………………………………..

168

5.4.2. Mesh ……………………………………………………………………………………………………………………

168

5.4.3. Solver ………………………………………………………………………………………………………………….

170

5.4.4. Models …………………………………………………………………………………………………………………

170

5.4.5. Materials ………………………………………………………………………………………………………………

171

5.4.6. Boundary Conditions ………………………………………………………………………………………………

173

5.4.7. Operating Conditions ……………………………………………………………………………………………..

176

5.4.8. Solution ……………………………………………………………………………………………………………….

177

5.4.9. Postprocessing ………………………………………………………………………………………………………

192

5.5. Summary ……………………………………………………………………………………………………………………..

197

5.6. Further Improvements ……………………………………………………………………………………………………

197

6. Modeling Transient Compressible Flow ………………………………………………………………………………….

199

6.1. Introduction …………………………………………………………………………………………………………………

199

6.2. Prerequisites …………………………………………………………………………………………………………………

199

6.3. Problem Description ………………………………………………………………………………………………………

199

6.4. Setup and Solution ………………………………………………………………………………………………………..

200

6.4.1. Preparation …………………………………………………………………………………………………………..

200

6.4.2. Reading and Checking the Mesh ……………………………………………………………………………….

200

6.4.3. Solver and Analysis Type ………………………………………………………………………………………….

203

6.4.4. Models …………………………………………………………………………………………………………………

204

6.4.5. Materials ………………………………………………………………………………………………………………

205

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

iv

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

6.4.6. Operating Conditions ……………………………………………………………………………………………..

205

6.4.7. Boundary Conditions ………………………………………………………………………………………………

206

6.4.8. Solution: Steady Flow ……………………………………………………………………………………………..

209

6.4.9. Enabling Time Dependence and Setting Transient Conditions ………………………………………..

224

6.4.10. Specifying Solution Parameters for Transient Flow and Solving ……………………………………..

226

6.4.11. Saving and Postprocessing Time-Dependent Data Sets ……………………………………………….

230

6.5. Summary ……………………………………………………………………………………………………………………..

242

6.6. Further Improvements ……………………………………………………………………………………………………

242

7. Modeling Flow Through Porous Media …………………………………………………………………………………..

243

7.1. Introduction …………………………………………………………………………………………………………………

243

7.2. Prerequisites …………………………………………………………………………………………………………………

243

7.3. Problem Description ………………………………………………………………………………………………………

244

7.4. Setup and Solution ………………………………………………………………………………………………………..

244

7.4.1. Preparation …………………………………………………………………………………………………………..

244

7.4.2. Mesh ……………………………………………………………………………………………………………………

245

7.4.3. General Settings …………………………………………………………………………………………………….

247

7.4.4. Models …………………………………………………………………………………………………………………

247

7.4.5. Materials ………………………………………………………………………………………………………………

248

7.4.6. Cell Zone Conditions ………………………………………………………………………………………………

250

7.4.7. Boundary Conditions ………………………………………………………………………………………………

253

7.4.8. Solution ……………………………………………………………………………………………………………….

256

7.4.9. Postprocessing ………………………………………………………………………………………………………

261

7.5. Summary ……………………………………………………………………………………………………………………..

276

7.6. Further Improvements ……………………………………………………………………………………………………

276

8. Modeling Radiation and Natural Convection ………………………………………………………………………….

277

8.1. Introduction …………………………………………………………………………………………………………………

277

8.2. Prerequisites …………………………………………………………………………………………………………………

277

8.3. Problem Description ………………………………………………………………………………………………………

277

8.4. Setup and Solution ………………………………………………………………………………………………………..

278

8.4.1. Preparation …………………………………………………………………………………………………………..

278

8.4.2. Reading and Checking the Mesh ……………………………………………………………………………….

279

8.4.3. Solver and Analysis Type ………………………………………………………………………………………….

279

8.4.4. Models …………………………………………………………………………………………………………………

280

8.4.5. Defining the Materials …………………………………………………………………………………………….

284

8.4.6. Operating Conditions ……………………………………………………………………………………………..

285

8.4.7. Boundary Conditions ………………………………………………………………………………………………

286

8.4.8. Obtaining the Solution ……………………………………………………………………………………………

291

8.4.9. Postprocessing ………………………………………………………………………………………………………

298

8.4.10. Comparing the Contour Plots after Varying Radiating Surfaces ……………………………………..

310

8.4.11. S2S Definition, Solution, and Postprocessing with Partial Enclosure ………………………………..

315

8.5. Summary ……………………………………………………………………………………………………………………..

318

8.6. Further Improvements ……………………………………………………………………………………………………

318

9. Using a Single Rotating Reference Frame ……………………………………………………………………………….

319

9.1. Introduction …………………………………………………………………………………………………………………

319

9.2. Prerequisites …………………………………………………………………………………………………………………

319

9.3. Problem Description ………………………………………………………………………………………………………

319

9.4. Setup and Solution ………………………………………………………………………………………………………..

320

9.4.1. Preparation …………………………………………………………………………………………………………..

321

9.4.2. Mesh ……………………………………………………………………………………………………………………

321

9.4.3. General Settings …………………………………………………………………………………………………….

321

9.4.4. Models …………………………………………………………………………………………………………………

323

9.4.5. Materials ………………………………………………………………………………………………………………

325

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

v

vk.com/club152685050Tutorial Guide | vk.com/id446425943

9.4.6. Cell Zone Conditions ………………………………………………………………………………………………

325

9.4.7. Boundary Conditions ………………………………………………………………………………………………

327

9.4.8. Solution Using the Standard k- ε Model ………………………………………………………………………

329

9.4.9. Postprocessing for the Standard k- ε Solution ………………………………………………………………

336

9.4.10. Solution Using the RNG k- ε Model …………………………………………………………………………..

345

9.4.11. Postprocessing for the RNG k- ε Solution …………………………………………………………………..

347

9.5. Summary ……………………………………………………………………………………………………………………..

352

9.6. Further Improvements ……………………………………………………………………………………………………

352

9.7. References ……………………………………………………………………………………………………………………

353

10. Using Multiple Reference Frames ………………………………………………………………………………………..

355

10.1. Introduction ……………………………………………………………………………………………………………….

355

10.2. Prerequisites ……………………………………………………………………………………………………………….

355

10.3. Problem Description …………………………………………………………………………………………………….

355

10.4. Setup and Solution ………………………………………………………………………………………………………

356

10.4.1. Preparation …………………………………………………………………………………………………………

356

10.4.2. Mesh ………………………………………………………………………………………………………………….

357

10.4.3. Models ……………………………………………………………………………………………………………….

357

10.4.4. Materials …………………………………………………………………………………………………………….

358

10.4.5. Cell Zone Conditions …………………………………………………………………………………………….

358

10.4.6. Boundary Conditions …………………………………………………………………………………………….

358

10.4.7. Solution ……………………………………………………………………………………………………………..

360

10.4.8. Postprocessing …………………………………………………………………………………………………….

363

10.5. Summary ……………………………………………………………………………………………………………………

364

10.6. Further Improvements ………………………………………………………………………………………………….

365

11. Using Sliding Meshes …………………………………………………………………………………………………………

367

11.1. Introduction ……………………………………………………………………………………………………………….

367

11.2. Prerequisites ……………………………………………………………………………………………………………….

367

11.3. Problem Description …………………………………………………………………………………………………….

367

11.4. Setup and Solution ………………………………………………………………………………………………………

368

11.4.1. Preparation …………………………………………………………………………………………………………

368

11.4.2. Mesh ………………………………………………………………………………………………………………….

369

11.4.3. General Settings …………………………………………………………………………………………………..

369

11.4.4. Models ……………………………………………………………………………………………………………….

372

11.4.5. Materials …………………………………………………………………………………………………………….

372

11.4.6. Cell Zone Conditions …………………………………………………………………………………………….

373

11.4.7. Boundary Conditions …………………………………………………………………………………………….

376

11.4.8. Operating Conditions ……………………………………………………………………………………………

382

11.4.9. Mesh Interfaces ……………………………………………………………………………………………………

382

11.4.10. Solution ……………………………………………………………………………………………………………

384

11.4.11. Postprocessing …………………………………………………………………………………………………..

402

11.5. Summary ……………………………………………………………………………………………………………………

406

11.6. Further Improvements ………………………………………………………………………………………………….

406

12. Using Overset and Dynamic Meshes …………………………………………………………………………………….

407

12.1. Prerequisites ……………………………………………………………………………………………………………….

408

12.2. Problem Description …………………………………………………………………………………………………….

408

12.3. Preparation …………………………………………………………………………………………………………………

409

12.4. Mesh …………………………………………………………………………………………………………………………

409

12.5. Overset Interface Creation ……………………………………………………………………………………………..

412

12.6. Steady-State Case Setup ………………………………………………………………………………………………..

415

12.6.1. General Settings …………………………………………………………………………………………………..

415

12.6.2. Models ……………………………………………………………………………………………………………….

415

12.6.3. Materials …………………………………………………………………………………………………………….

417

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

vi

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

12.6.4. Operating Conditions ……………………………………………………………………………………………

417

12.6.5. Boundary Conditions …………………………………………………………………………………………….

417

12.6.6. Reference Values ………………………………………………………………………………………………….

419

12.6.7. Solution ……………………………………………………………………………………………………………..

419

12.7. Unsteady Setup …………………………………………………………………………………………………………..

425

12.7.1. General Settings …………………………………………………………………………………………………..

425

12.7.2. Compile the UDF ………………………………………………………………………………………………….

425

12.7.3. Dynamic Mesh Settings …………………………………………………………………………………………

426

12.7.4. Report Generation for Unsteady Case ………………………………………………………………………

429

12.7.5. Run Calculations for Unsteady Case …………………………………………………………………………

430

12.7.6. Overset Solution Checking …………………………………………………………………………………….

431

12.7.7. Postprocessing …………………………………………………………………………………………………….

431

12.7.8. Diagnosing an Overset Case …………………………………………………………………………………..

434

12.8. Summary ……………………………………………………………………………………………………………………

441

13. Modeling Species Transport and Gaseous Combustion ………………………………………………………….

443

13.1. Introduction ……………………………………………………………………………………………………………….

443

13.2. Prerequisites ……………………………………………………………………………………………………………….

443

13.3. Problem Description …………………………………………………………………………………………………….

443

13.4. Background ………………………………………………………………………………………………………………..

444

13.5. Setup and Solution ………………………………………………………………………………………………………

444

13.5.1. Preparation …………………………………………………………………………………………………………

444

13.5.2. Mesh ………………………………………………………………………………………………………………….

445

13.5.3. General Settings …………………………………………………………………………………………………..

445

13.5.4. Models ……………………………………………………………………………………………………………….

447

13.5.5. Materials …………………………………………………………………………………………………………….

450

13.5.6. Boundary Conditions …………………………………………………………………………………………….

453

13.5.7. Initial Reaction Solution …………………………………………………………………………………………

459

13.5.8. Postprocessing …………………………………………………………………………………………………….

463

13.5.9. NOx Prediction …………………………………………………………………………………………………….

470

13.6. Summary ……………………………………………………………………………………………………………………

479

13.7. Further Improvements ………………………………………………………………………………………………….

479

14. Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models ……………………….

481

14.1. Introduction ……………………………………………………………………………………………………………….

481

14.2. Prerequisites ……………………………………………………………………………………………………………….

481

14.3. Problem Description …………………………………………………………………………………………………….

481

14.4. Setup and Solution ………………………………………………………………………………………………………

482

14.4.1. Preparation …………………………………………………………………………………………………………

483

14.4.2. Mesh ………………………………………………………………………………………………………………….

483

14.4.3. Solver Settings …………………………………………………………………………………………………….

484

14.4.4. Models ……………………………………………………………………………………………………………….

484

14.4.5. Boundary Conditions …………………………………………………………………………………………….

485

14.4.6. Solution ……………………………………………………………………………………………………………..

487

14.4.7. Postprocessing for the Eddy-Dissipation Solution ……………………………………………………….

489

14.5. Steady Diffusion Flamelet Model Setup and Solution ………………………………………………………….

495

14.5.1. Models ……………………………………………………………………………………………………………….

496

14.5.2. Boundary Conditions …………………………………………………………………………………………….

497

14.5.3. Solution ……………………………………………………………………………………………………………..

498

14.5.4. Postprocessing for the Steady Diffusion Flamelet Solution ……………………………………………

498

14.6. Summary ……………………………………………………………………………………………………………………

501

15. Modeling Surface Chemistry ……………………………………………………………………………………………….

503

15.1. Introduction ……………………………………………………………………………………………………………….

503

15.2. Prerequisites ……………………………………………………………………………………………………………….

503

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

vii

vk.com/club152685050Tutorial Guide | vk.com/id446425943

15.3. Problem Description …………………………………………………………………………………………………….

504

15.4. Setup and Solution ………………………………………………………………………………………………………

505

15.4.1. Preparation …………………………………………………………………………………………………………

505

15.4.2. Reading and Checking the Mesh ……………………………………………………………………………..

505

15.4.3. Solver and Analysis Type ………………………………………………………………………………………..

507

15.4.4. Specifying the Models …………………………………………………………………………………………..

507

15.4.5. Defining Materials and Properties ……………………………………………………………………………

509

15.4.6. Specifying Boundary Conditions ……………………………………………………………………………..

520

15.4.7. Setting the Operating Conditions ……………………………………………………………………………

527

15.4.8. Simulating Non-Reacting Flow ………………………………………………………………………………..

528

15.4.9. Simulating Reacting Flow ………………………………………………………………………………………

530

15.4.10. Postprocessing the Solution Results ……………………………………………………………………….

536

15.5. Summary ……………………………………………………………………………………………………………………

542

15.6. Further Improvements ………………………………………………………………………………………………….

542

16. Modeling Evaporating Liquid Spray …………………………………………………………………………………….

543

16.1. Introduction ……………………………………………………………………………………………………………….

543

16.2. Prerequisites ……………………………………………………………………………………………………………….

543

16.3. Problem Description …………………………………………………………………………………………………….

543

16.4. Setup and Solution ………………………………………………………………………………………………………

544

16.4.1. Preparation …………………………………………………………………………………………………………

544

16.4.2. Mesh ………………………………………………………………………………………………………………….

545

16.4.3. Solver …………………………………………………………………………………………………………………

548

16.4.4. Models ……………………………………………………………………………………………………………….

548

16.4.5. Materials …………………………………………………………………………………………………………….

551

16.4.6. Boundary Conditions …………………………………………………………………………………………….

552

16.4.7. Initial Solution Without Droplets ……………………………………………………………………………..

558

16.4.8. Creating a Spray Injection ………………………………………………………………………………………

568

16.4.9. Solution ……………………………………………………………………………………………………………..

577

16.4.10. Postprocessing …………………………………………………………………………………………………..

586

16.5. Summary ……………………………………………………………………………………………………………………

596

16.6. Further Improvements ………………………………………………………………………………………………….

596

17. Using the VOF Model ………………………………………………………………………………………………………….

597

17.1. Introduction ……………………………………………………………………………………………………………….

597

17.2. Prerequisites ……………………………………………………………………………………………………………….

597

17.3. Problem Description …………………………………………………………………………………………………….

597

17.4. Setup and Solution ………………………………………………………………………………………………………

599

17.4.1. Preparation …………………………………………………………………………………………………………

599

17.4.2. Reading and Manipulating the Mesh ………………………………………………………………………..

600

17.4.3. General Settings …………………………………………………………………………………………………..

604

17.4.4. Models ……………………………………………………………………………………………………………….

606

17.4.5. Materials …………………………………………………………………………………………………………….

607

17.4.6. Phases ………………………………………………………………………………………………………………..

609

17.4.7. Operating Conditions ……………………………………………………………………………………………

612

17.4.8. User-Defined Function (UDF) ………………………………………………………………………………….

612

17.4.9. Boundary Conditions …………………………………………………………………………………………….

613

17.4.10. Solution ……………………………………………………………………………………………………………

617

17.4.11. Postprocessing …………………………………………………………………………………………………..

624

17.5. Summary ……………………………………………………………………………………………………………………

628

17.6. Further Improvements ………………………………………………………………………………………………….

628

18. Modeling Cavitation …………………………………………………………………………………………………………..

629

18.1. Introduction ……………………………………………………………………………………………………………….

629

18.2. Prerequisites ……………………………………………………………………………………………………………….

629

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

viii

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

18.3. Problem Description …………………………………………………………………………………………………….

629

18.4. Setup and Solution ………………………………………………………………………………………………………

630

18.4.1. Preparation …………………………………………………………………………………………………………

630

18.4.2. Reading and Checking the Mesh ……………………………………………………………………………..

631

18.4.3. Solver Settings …………………………………………………………………………………………………….

632

18.4.4. Models ……………………………………………………………………………………………………………….

633

18.4.5. Materials …………………………………………………………………………………………………………….

635

18.4.6. Phases ………………………………………………………………………………………………………………..

638

18.4.7. Boundary Conditions …………………………………………………………………………………………….

641

18.4.8. Operating Conditions ……………………………………………………………………………………………

646

18.4.9. Solution ……………………………………………………………………………………………………………..

647

18.4.10. Postprocessing …………………………………………………………………………………………………..

651

18.5. Summary ……………………………………………………………………………………………………………………

655

18.6. Further Improvements ………………………………………………………………………………………………….

656

19. Using the Multiphase Models ……………………………………………………………………………………………..

657

19.1. Introduction ……………………………………………………………………………………………………………….

657

19.2. Prerequisites ……………………………………………………………………………………………………………….

657

19.3. Problem Description …………………………………………………………………………………………………….

657

19.4. Setup and Solution ………………………………………………………………………………………………………

658

19.4.1. Preparation …………………………………………………………………………………………………………

658

19.4.2. Mesh ………………………………………………………………………………………………………………….

659

19.4.3. Solver Settings …………………………………………………………………………………………………….

660

19.4.4. Models ……………………………………………………………………………………………………………….

661

19.4.5. Materials …………………………………………………………………………………………………………….

662

19.4.6. Phases ………………………………………………………………………………………………………………..

663

19.4.7. Cell Zone Conditions …………………………………………………………………………………………….

663

19.4.8. Boundary Conditions …………………………………………………………………………………………….

664

19.4.9. Solution ……………………………………………………………………………………………………………..

665

19.4.10. Postprocessing …………………………………………………………………………………………………..

667

19.5. Summary ……………………………………………………………………………………………………………………

671

20. Modeling Solidification ………………………………………………………………………………………………………

673

20.1. Introduction ……………………………………………………………………………………………………………….

673

20.2. Prerequisites ……………………………………………………………………………………………………………….

673

20.3. Problem Description …………………………………………………………………………………………………….

673

20.4. Setup and Solution ………………………………………………………………………………………………………

674

20.4.1. Preparation …………………………………………………………………………………………………………

675

20.4.2. Reading and Checking the Mesh ……………………………………………………………………………..

675

20.4.3. Specifying Solver and Analysis Type …………………………………………………………………………

676

20.4.4. Specifying the Models …………………………………………………………………………………………..

678

20.4.5. Defining Materials ………………………………………………………………………………………………..

679

20.4.6. Setting the Cell Zone Conditions ……………………………………………………………………………..

682

20.4.7. Setting the Boundary Conditions …………………………………………………………………………….

682

20.4.8. Solution: Steady Conduction …………………………………………………………………………………..

691

20.4.9. Solution:Transient Flow and Heat Transfer …………………………………………………………………

702

20.5. Summary ……………………………………………………………………………………………………………………

713

20.6. Further Improvements ………………………………………………………………………………………………….

713

21. Using the Eulerian Granular Multiphase Model with Heat Transfer ………………………………………….

715

21.1. Introduction ……………………………………………………………………………………………………………….

715

21.2. Prerequisites ……………………………………………………………………………………………………………….

715

21.3. Problem Description …………………………………………………………………………………………………….

715

21.4. Setup and Solution ………………………………………………………………………………………………………

716

21.4.1. Preparation …………………………………………………………………………………………………………

716

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

ix

vk.com/club152685050Tutorial Guide | vk.com/id446425943

21.4.2. Mesh ………………………………………………………………………………………………………………….

717

21.4.3. Solver Settings …………………………………………………………………………………………………….

718

21.4.4. Models ……………………………………………………………………………………………………………….

719

21.4.5. UDF …………………………………………………………………………………………………………………..

720

21.4.6. Materials …………………………………………………………………………………………………………….

721

21.4.7. Phases ………………………………………………………………………………………………………………..

722

21.4.8. Boundary Conditions …………………………………………………………………………………………….

726

21.4.9. Solution ……………………………………………………………………………………………………………..

732

21.4.10. Postprocessing …………………………………………………………………………………………………..

745

21.5. Summary ……………………………………………………………………………………………………………………

747

21.6. Further Improvements ………………………………………………………………………………………………….

747

21.7. References ………………………………………………………………………………………………………………….

747

22. Modeling One-Way Fluid-Structure Interaction (FSI) Within Fluent ………………………………………….

749

22.1. Introduction ……………………………………………………………………………………………………………….

749

22.2. Prerequisites ……………………………………………………………………………………………………………….

749

22.3. Problem Description …………………………………………………………………………………………………….

749

22.4. Setup and Solution ………………………………………………………………………………………………………

750

22.4.1. Preparation …………………………………………………………………………………………………………

750

22.4.2. Structural Model …………………………………………………………………………………………………..

752

22.4.3. Materials …………………………………………………………………………………………………………….

752

22.4.4. Cell Zone Conditions …………………………………………………………………………………………….

754

22.4.5. Boundary Conditions …………………………………………………………………………………………….

755

22.4.6. Solution ……………………………………………………………………………………………………………..

758

22.4.7. Postprocessing …………………………………………………………………………………………………….

760

22.5. Summary ……………………………………………………………………………………………………………………

763

23. Modeling Two-Way Fluid-Structure Interaction (FSI) Within Fluent ………………………………………….

765

23.1. Introduction ……………………………………………………………………………………………………………….

765

23.2. Prerequisites ……………………………………………………………………………………………………………….

765

23.3. Problem Description …………………………………………………………………………………………………….

766

23.4. Setup and Solution ………………………………………………………………………………………………………

766

23.4.1. Preparation …………………………………………………………………………………………………………

766

23.4.2. Solver and Analysis Type ………………………………………………………………………………………..

769

23.4.3. Structural Model …………………………………………………………………………………………………..

769

23.4.4. Materials …………………………………………………………………………………………………………….

770

23.4.5. Cell Zone Conditions …………………………………………………………………………………………….

771

23.4.6. Boundary Conditions …………………………………………………………………………………………….

771

23.4.7. Dynamic Mesh Zones ……………………………………………………………………………………………

774

23.4.8. Solution Animations ……………………………………………………………………………………………..

778

23.4.9. Solution ……………………………………………………………………………………………………………..

788

23.4.10. Postprocessing …………………………………………………………………………………………………..

791

23.5. Summary ……………………………………………………………………………………………………………………

793

24. Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder ……………………………………………………

795

24.1. Introduction ……………………………………………………………………………………………………………….

795

24.2. Prerequisites ……………………………………………………………………………………………………………….

795

24.3. Problem Description …………………………………………………………………………………………………….

796

24.4. Setup and Solution ………………………………………………………………………………………………………

796

24.4.1. Step 1: Preparation ……………………………………………………………………………………………….

796

24.4.2. Step 2: Define Observables …………………………………………………………………………………….

798

24.4.3. Step 3: Compute the Drag Sensitivity ……………………………………………………………………….

801

24.4.4. Step 4: Postprocess and Export Drag Sensitivity ………………………………………………………….

805

24.4.4.1. Boundary Condition Sensitivity ……………………………………………………………………….

806

24.4.4.2. Momentum Source Sensitivity ………………………………………………………………………..

806

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

x

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

24.4.4.3. Shape Sensitivity ………………………………………………………………………………………….

808

24.4.4.4. Exporting Drag Sensitivity Data ……………………………………………………………………….

810

24.4.5. Step 5: Compute Lift Sensitivity ……………………………………………………………………………….

813

24.4.6. Step 6: Modify the Shape ……………………………………………………………………………………….

814

24.5. Summary ……………………………………………………………………………………………………………………

820

25. Simulating a Single Battery Cell Using the MSMD Battery Model …………………………………………….

823

25.1. Introduction ……………………………………………………………………………………………………………….

823

25.2. Prerequisites ……………………………………………………………………………………………………………….

823

25.3. Problem Description …………………………………………………………………………………………………….

823

25.4. Setup and Solution ………………………………………………………………………………………………………

824

25.4.1. Preparation …………………………………………………………………………………………………………

824

25.4.2. Reading and Scaling the Mesh ………………………………………………………………………………..

825

25.4.3. Loading the MSMD battery Add-on ………………………………………………………………………….

825

25.4.4. NTGK Battery Model Setup …………………………………………………………………………………….

825

25.4.4.1. Specifying Solver and Models ………………………………………………………………………….

826

25.4.4.2. Defining New Materials for Cell and Tabs …………………………………………………………..

831

25.4.4.3. Defining Cell Zone Conditions …………………………………………………………………………

835

25.4.4.4. Defining Boundary Conditions ………………………………………………………………………..

836

25.4.4.5. Specifying Solution Settings ……………………………………………………………………………

836

25.4.4.6. Obtaining Solution ……………………………………………………………………………………….

840

25.4.5. Postprocessing …………………………………………………………………………………………………….

842

25.4.6. Simulating the Battery Pulse Discharge Using the ECM Model ………………………………………

850

25.4.7. Using the Reduced Order Method (ROM) ………………………………………………………………….

851

25.4.8. External and Internal Short-Circuit Treatment …………………………………………………………….

852

25.4.8.1. Setting up and Solving a Short-Circuit Problem ………………………………………………….

852

25.4.8.2. Postprocessing …………………………………………………………………………………………….

854

25.5. Summary ……………………………………………………………………………………………………………………

859

25.6. Appendix ……………………………………………………………………………………………………………………

859

25.7. References ………………………………………………………………………………………………………………….

861

26. Simulating a 1P3S Battery Pack Using the MSMD Battery Model …………………………………………….

863

26.1. Introduction ……………………………………………………………………………………………………………….

863

26.2. Prerequisites ……………………………………………………………………………………………………………….

863

26.3. Problem Description …………………………………………………………………………………………………….

863

26.4. Setup and Solution ………………………………………………………………………………………………………

864

26.4.1. Preparation …………………………………………………………………………………………………………

864

26.4.2. Reading and Scaling the Mesh ………………………………………………………………………………..

865

26.4.3. Loading the MSMD battery Add-on ………………………………………………………………………….

866

26.4.4. Battery Model Setup ……………………………………………………………………………………………..

866

26.4.4.1. Specifying Solver and Models ………………………………………………………………………….

866

26.4.4.2. Defining New Materials ………………………………………………………………………………….

871

26.4.4.3. Defining Cell Zone Conditions …………………………………………………………………………

875

26.4.4.4. Defining Boundary Conditions ………………………………………………………………………..

876

26.4.4.5. Specifying Solution Settings ……………………………………………………………………………

877

26.4.4.6. Obtaining Solution ……………………………………………………………………………………….

881

26.4.5. Postprocessing …………………………………………………………………………………………………….

883

26.5. Summary ……………………………………………………………………………………………………………………

889

27. In-Flight Icing Tutorial Using Fluent Icing ……………………………………………………………………………..

891

27.1. Fluent Airflow on the NACA0012 Airfoil …………………………………………………………………………..

891

27.2. Flow Solution on the Rough NACA0012 Airfoil …………………………………………………………………..

892

27.3. Droplet Impingement on the NACA0012 ………………………………………………………………………….

895

27.3.1. Monodispersed Calculation ……………………………………………………………………………………

896

27.3.2. Langmuir-D Distribution ………………………………………………………………………………………..

900

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

xi

vk.com/club152685050Tutorial Guide | vk.com/id446425943

27.3.3. Post-Processing Using Quick-View …………………………………………………………………………..

903

27.4. Fluent Icing Ice Accretion on the NACA0012 ……………………………………………………………………..

912

27.5. Postprocessing an Ice Accretion Solution Using CFD-Post Macros ………………………………………….

919

27.6. Multi-Shot Ice Accretion with Automatic Mesh Displacement ……………………………………………….

925

27.7. Multi-Shot Ice Accretion with Automatic Mesh Displacement – Postprocessing Using CFD-Post ….

929

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

xii

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

List of Figures

1.1. Manifold Geometry for Flow Modeling ……………………………………………………………………………………….

2

1.2. Mass Flow Rate History ………………………………………………………………………………………………………….

26

1.3. Residuals …………………………………………………………………………………………………………………………….

26

1.4. Pathlines Through the Manifold ……………………………………………………………………………………………….

28

1.5. Scene Containing the Mesh and Pathlines Throughout the Manifold ………………………………………………

31

1.6. Contours of Velocity Magnitude at the Outlet …………………………………………………………………………….

33

2.1. Problem Specification ……………………………………………………………………………………………………………

36

2.2. The Hexahedral Mesh for the Mixing Elbow ……………………………………………………………………………….

43

2.3. Convergence History of the Mass-Weighted Average Temperature …………………………………………………

66

2.4. Residuals …………………………………………………………………………………………………………………………….

66

2.5. Predicted Velocity Distribution after the Initial Calculation ……………………………………………………………

70

2.6. Predicted Temperature Distribution after the Initial Calculation ……………………………………………………..

72

2.7. Velocity Vectors Colored by Velocity Magnitude ………………………………………………………………………….

73

2.8. Resized Velocity Vectors …………………………………………………………………………………………………………

74

2.9. Magnified View of Resized Velocity Vectors ………………………………………………………………………………..

74

2.10. Outlet Temperature Profile for the Initial Solution ……………………………………………………………………..

77

2.11. Contours of the Dynamic Head Custom Field Function ……………………………………………………………….

79

2.12. Cells Marked for Adaption …………………………………………………………………………………………………….

83

2.13. Alternative Display of Cells Marked for Adaption ……………………………………………………………………….

85

2.14. The Adapted Mesh ………………………………………………………………………………………………………………

87

2.15. The Complete Residual History ………………………………………………………………………………………………

88

2.16. Convergence History of Mass-Weighted Average Temperature …………………………………………………….

88

2.17. Filled Contours of Temperature Using the Adapted Mesh ……………………………………………………………

89

2.18. Outlet Temperature Profile for the Adapted Coupled Solver Solution …………………………………………….

90

2.19. Outlet Temperature Profiles for the Two Solutions ……………………………………………………………………..

93

3.1. Problem Specification ……………………………………………………………………………………………………………

96

3.2. Mesh Display of the Chip and Board Surfaces …………………………………………………………………………….

99

3.3. Graphics Window with Default Lighting …………………………………………………………………………………..

101

3.4. Display with Additional Lighting: — Headlight Off ……………………………………………………………………….

102

3.5. Display with Additional Lighting ……………………………………………………………………………………………

103

3.6. Filled Contours of Temperature on the Symmetry Surfaces ………………………………………………………….

108

3.7. Filled Contours of Temperature on the Clipped Surface ………………………………………………………………

109

3.8.Temperature Contours on the Surface,Y= 0.25 in. ………………………………………………………………………

110

3.9. Velocity Vectors in the Module Symmetry Plane ………………………………………………………………………..

112

3.10.Velocity Vectors Intersecting the Surface ………………………………………………………………………………..

114

3.11. Velocity Vectors After Mirroring ……………………………………………………………………………………………

115

3.12. Filled Temperature Contours on the Chip and Board Top Surfaces ………………………………………………

117

3.13. Filled Temperature Contours on the Chip and Board Top Surfaces ………………………………………………

118

3.14. Pathlines Display Colored by Static Pressure ……………………………………………………………………………

122

3.15. Sphere Pathlines Display Colored by Static Pressure …………………………………………………………………

123

3.16. Sphere Pathlines Colored by Static Temperature ……………………………………………………………………..

124

3.17. Temperature Contours and Velocity Vectors Scene …………………………………………………………………..

126

3.18. Overlay of Pathlines Colored by Pressure on Velocity Vectors and Temperature Contours Scene ……….

128

3.19. Exploded Scene Display of Temperature and Velocity ……………………………………………………………….

133

3.20. Temperature Along the Top Centerline of the Module ………………………………………………………………

138

3.21. A Display with Annotation …………………………………………………………………………………………………..

140

4.1. Schematic of the Problem …………………………………………………………………………………………………….

144

4.2. Mesh for the Periodic Tube Bank …………………………………………………………………………………………….

147

4.3. Contours of Static Pressure ……………………………………………………………………………………………………

158

4.4. Contours of Static Pressure with Symmetry ………………………………………………………………………………

159

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

xiii

vk.com/club152685050Tutorial Guide | vk.com/id446425943

4.5. Contours of Static Temperature ……………………………………………………………………………………………..

160

4.6. Velocity Vectors …………………………………………………………………………………………………………………..

162

4.7. Static Temperature at x=0.01, 0.02, and 0.03 m ………………………………………………………………………….

165

5.1. Problem Specification ………………………………………………………………………………………………………….

168

5.2. The Entire Mesh ………………………………………………………………………………………………………………….

169

5.3. Magnified View of the Mesh Around the Airfoil …………………………………………………………………………

169

5.4. Pressure Contours After 50 Iterations ………………………………………………………………………………………

186

5.5. Magnified View of Pressure Contours Showing Wall-Adjacent Cells ……………………………………………….

187

5.6. Velocity Magnitude History …………………………………………………………………………………………………..

190

5.7. Drag Coefficient Convergence History …………………………………………………………………………………….

191

5.8. Lift Coefficient Convergence History ……………………………………………………………………………………….

191

5.9. Moment Coefficient Convergence History ……………………………………………………………………………….

192

5.10. XY Plot of y+ Distribution ……………………………………………………………………………………………………

193

5.11. Contour Plot of Mach Number ……………………………………………………………………………………………..

194

5.12. XY Plot of Pressure …………………………………………………………………………………………………………….

195

5.13. XY Plot of x Wall Shear Stress ……………………………………………………………………………………………….

195

5.14. Contour Plot of x Component of Velocity ……………………………………………………………………………….

196

5.15. Plot of Velocity Vectors Downstream of the Shock ……………………………………………………………………

197

6.1. Problem Specification ………………………………………………………………………………………………………….

200

6.2. 2D Nozzle Mesh Display with Mirroring …………………………………………………………………………………..

202

6.3. Mass Flow Rate History …………………………………………………………………………………………………………

218

6.4. 2D Nozzle Mesh after Adaption ……………………………………………………………………………………………..

220

6.5. Contours of Static Pressure (Steady Flow) …………………………………………………………………………………

221

6.6. Velocity Vectors Showing Recirculation (Steady Flow) ………………………………………………………………..

223

6.7. Mass Flow Rate History (Transient Flow) ………………………………………………………………………………….

230

6.8. Pressure Contours at t=0.017136 s ………………………………………………………………………………………….

234

6.9. Mach Number Contours at t=0.017136 s ………………………………………………………………………………….

236

6.10. Pressure Contours at t=0.017993 s ………………………………………………………………………………………..

238

6.11. Pressure Contours at t=0.019135 s ………………………………………………………………………………………..

239

6.12. Mach Number Contours at t=0.017993 s ………………………………………………………………………………..

239

6.13. Mach Number Contours at t=0.019135 s ………………………………………………………………………………..

240

6.14.Velocity Vectors at t=0.018849 s ……………………………………………………………………………………………

242

7.1. Catalytic Converter Geometry for Flow Modeling ………………………………………………………………………

244

7.2. Mesh for the Catalytic Converter Geometry ……………………………………………………………………………..

247

7.3. Mass Flow Rate History …………………………………………………………………………………………………………

261

7.4. Velocity Vectors on the y=0 Plane …………………………………………………………………………………………..

270

7.5. Contours of Static Pressure on the y=0 plane ……………………………………………………………………………

272

7.6. Plot of Static Pressure on the porous-cl Line Surface ………………………………………………………………….

273

7.7. Contours of the X Velocity on the x=95, x=130, and x=165 Surfaces ………………………………………………

274

8.1. Schematic of the Problem …………………………………………………………………………………………………….

278

8.2. Graphics Display of Mesh ……………………………………………………………………………………………………..

279

8.3.Temperature Surface Report ………………………………………………………………………………………………….

297

8.4. Scaled Residuals …………………………………………………………………………………………………………………

297

8.5. Contours of Static Temperature ……………………………………………………………………………………………..

300

8.6. Contours of Wall Temperature ……………………………………………………………………………………………….

302

8.7. Contours of Radiation Heat Flux …………………………………………………………………………………………….

304

8.8. Vectors of Velocity Magnitude ……………………………………………………………………………………………….

305

8.9.Temperature Profile Along the Outer Surface of the Box ……………………………………………………………..

310

8.10. Contours of Wall Temperature: 100 Face per Surface Cluster ………………………………………………………

311

8.11. Contours of Wall Temperature: 800 Faces per Surface Cluster ……………………………………………………..

312

8.12. Contours of Wall Temperature: 1600 Faces per Surface Cluster ……………………………………………………

312

8.13. A Comparison of Temperature Profiles along the Outer Surface of the Box ……………………………………

314

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

xiv

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

8.14. Wall Temperature Profile Comparison ……………………………………………………………………………………

318

9.1. Problem Specification ………………………………………………………………………………………………………….

320

9.2. Mesh Display for the Disk Cavity …………………………………………………………………………………………….

322

9.3. Mass Flow Rate History (k- ε Turbulence Model) ………………………………………………………………………..

335

9.4. Magnified View of Velocity Vectors within the Disk Cavity ……………………………………………………………

338

9.5. Contours of Static Pressure for the Entire Disk Cavity ………………………………………………………………….

340

9.6. Radial Velocity Distribution—Standard k- ε Solution ………………………………………………………………….

342

9.7. Wall Yplus Distribution on wall-6— Standard k- ε Solution ………………………………………………………….

344

9.8. Radial Velocity Distribution — RNG k- ε and Standard k- ε Solutions ……………………………………………..

349

9.9. RNG k- ε and Standard k- ε Solutions (x=0 cm to x=1 cm) ……………………………………………………………

350

9.10. wall-6 — RNG k- ε and Standard k- ε Solutions (x=0 cm to x=43 cm) ……………………………………………

352

10.1. Case Geometry …………………………………………………………………………………………………………………

356

10.2. Contours of Static Pressure ………………………………………………………………………………………………….

364

11.1. Rotor-Stator Problem Description …………………………………………………………………………………………

368

11.2. Rotor-Stator Display …………………………………………………………………………………………………………..

370

11.3. Residual History for the First Revolution of the Rotor ………………………………………………………………..

392

11.4. Mass Flow Rate at the Inlet During the First Revolution …………………………………………………………….

393

11.5. Mass Flow Rate at the Outlet During the First Revolution …………………………………………………………..

393

11.6. Static Pressure at the Interface During the First Revolution ………………………………………………………..

394

11.7. Mass Flow Rate at the Inlet During the Next 3 Revolutions ………………………………………………………..

397

11.8. Mass Flow Rate at the Outlet During the Next 3 Revolutions ………………………………………………………

397

11.9. Static Pressure at the Interface During the Next 3 Revolutions ……………………………………………………

398

11.10. Static Pressure at a Point on The Stator Interface During the Final Revolution ………………………………

402

11.11. FFT of Static Pressure at the Stator ………………………………………………………………………………………

404

11.12. Mean Static Pressure on the Outer Shroud of the Axial Compressor …………………………………………..

406

12.1. Schematic of Problem ………………………………………………………………………………………………………..

408

12.2. Close View of Bay Area ……………………………………………………………………………………………………….

409

12.3. Cell Marking on component ………………………………………………………………………………………………..

438

12.4. Cell Marking on fluid-background ………………………………………………………………………………………..

438

12.5. Dead Cells in the Component ………………………………………………………………………………………………

440

12.6. Dead Cells in the Background ………………………………………………………………………………………………

441

13.1. Combustion of Methane Gas in a Turbulent Diffusion Flame Furnace …………………………………………..

444

13.2. The Quadrilateral Mesh for the Combustor Model ……………………………………………………………………

446

13.3. Contours of Temperature …………………………………………………………………………………………………….

464

13.4. Velocity Vectors …………………………………………………………………………………………………………………

466

13.5. Contours of CH4 Mass Fraction …………………………………………………………………………………………….

466

13.6. Contours of O2 Mass Fraction ………………………………………………………………………………………………

467

13.7. Contours of CO2 Mass Fraction …………………………………………………………………………………………….

467

13.8. Contours of H2O Mass Fraction …………………………………………………………………………………………….

468

13.9. Contours of NO Mass Fraction — Prompt and Thermal NOx Formation ………………………………………..

474

13.10. Contours of NO Mass Fraction—Thermal NOx Formation ………………………………………………………..

476

13.11. Contours of NO Mass Fraction—Prompt NOx Formation …………………………………………………………

477

13.12. Contours of NO ppm — Prompt NOx Formation …………………………………………………………………….

479

14.1. Can Combustor Geometry …………………………………………………………………………………………………..

482

14.2. Mesh Display of the Can Combustor ……………………………………………………………………………………..

484

14.3. Scaled Residuals ………………………………………………………………………………………………………………..

488

14.4. Convergence History of Mass-Weighted Average CO2 on the Outlet ……………………………………………

489

14.5. Contours of CO2 Mass Fraction …………………………………………………………………………………………….

493

14.6. Contours of O2 Mass Fraction ………………………………………………………………………………………………

494

14.7. Contours of Static Temperature on the Combustor Walls …………………………………………………………..

495

14.8. Contours of Mean Mixture Fraction ……………………………………………………………………………………….

499

14.9. Contours of CO2 Mass Fraction …………………………………………………………………………………………….

499

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

xv

vk.com/club152685050Tutorial Guide | vk.com/id446425943

14.10. Convergence History of Mass-Weighted Average CO2 on the Outlet ………………………………………….

501

15.1. Schematic of the Reactor Configuration …………………………………………………………………………………

504

15.2. Mesh Display ……………………………………………………………………………………………………………………

507

15.3. Contours of Surface Deposition Rate of Ga ……………………………………………………………………………..

534

15.4. Scaled Residuals ………………………………………………………………………………………………………………..

535

15.5. Temperature Contours Near wall-4 ……………………………………………………………………………………….

538

15.6. Contours of Surface Deposition Rate of ga ……………………………………………………………………………..

539

15.7. Contours of Surface Coverage of ga_s ……………………………………………………………………………………

539

15.8. Plot of Surface Deposition Rate of Ga …………………………………………………………………………………….

542

16.1. Problem Specification ………………………………………………………………………………………………………..

544

16.2. Air-Blast Atomizer Mesh Display …………………………………………………………………………………………..

548

16.3. Scaled Residuals ………………………………………………………………………………………………………………..

562

16.4. Velocity Magnitude at Mid-Point of Atomizer Section ……………………………………………………………….

565

16.5. Pathlines of Air in the Swirling Annular Stream ………………………………………………………………………..

568

16.6. Convergence History of Mass Fraction of ch3oh on Fluid …………………………………………………………..

585

16.7. Convergence History of DPM Mass Source on Fluid ………………………………………………………………….

585

16.8. Convergence History of Total Mass in Domain …………………………………………………………………………

586

16.9. Convergence History of Evaporated Particle Mass ……………………………………………………………………

586

16.10. Particle Tracks for the Spray Injection …………………………………………………………………………………..

588

16.11. Contours of DPM Temperature ……………………………………………………………………………………………

590

16.12. Contours of DPM Sauter Diameter ………………………………………………………………………………………

590

16.13.Vectors of DPM Mean Velocity Colored by DPM Velocity Magnitude …………………………………………..

592

16.14. Full Atomizer Display with Surface of Constant Methanol Mass Fraction …………………………………….

595

16.15. Atomizer Display with Surface of Constant Methanol Mass Fraction Enhanced …………………………….

596

17.1. Schematic of the Problem …………………………………………………………………………………………………..

598

17.2. Default Display of the Nozzle Mesh ……………………………………………………………………………………….

600

17.3. The Quadrilateral Mesh ………………………………………………………………………………………………………

601

17.4. Mesh Display of the Nozzle Mirrored and Upright ……………………………………………………………………

604

17.5. Contours of Water Volume Fraction After 6 μs …………………………………………………………………………

626

17.6. Contours of Water Volume Fraction After 12 μs ………………………………………………………………………..

626

17.7. Contours of Water Volume Fraction After 18 μs ………………………………………………………………………..

627

17.8. Contours of Water Volume Fraction After 24 μs ………………………………………………………………………..

627

17.9. Contours of Water Volume Fraction After 30 μs ………………………………………………………………………..

628

18.1. Problem Schematic ……………………………………………………………………………………………………………

630

18.2.The Mesh in the Orifice ……………………………………………………………………………………………………….

632

18.3. Contours of Static Pressure ………………………………………………………………………………………………….

653

18.4. Mirrored View of Contours of Static Pressure …………………………………………………………………………..

654

18.5. Contours of Turbulent Kinetic Energy …………………………………………………………………………………….

654

18.6. Contours of Vapor Volume Fraction ……………………………………………………………………………………….

655

19.1. Problem Schematic ……………………………………………………………………………………………………………

658

19.2. Mesh Display of the Mixing Tank …………………………………………………………………………………………..

660

19.3. Residual History ………………………………………………………………………………………………………………..

666

19.4. Contours of Air Volume Fraction on the XZ plane …………………………………………………………………….

668

19.5. Contours of Air Volume Fraction on the z=0.08 plane ……………………………………………………………….

669

19.6.Vectors of Water Velocity Magnitude on the XZ plane ……………………………………………………………….

670

19.7. Vectors of Air Velocity Magnitude on the XZ plane …………………………………………………………………..

670

20.1. Solidification in Czochralski Model ……………………………………………………………………………………….

674

20.2. Mesh Display ……………………………………………………………………………………………………………………

676

20.3. Contours of Temperature for the Steady Conduction Solution ……………………………………………………

700

20.4. Contours of Temperature (Mushy Zone) for the Steady Conduction Solution ………………………………..

702

20.5. Contours of Temperature at t=0.2 s ……………………………………………………………………………………….

708

20.6. Contours of Stream Function at t=0.2 s ………………………………………………………………………………….

709

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

xvi

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

Tutorial Guide

20.7. Contours of Liquid Fraction at t=0.2 s …………………………………………………………………………………….

710

20.8. Contours of Temperature at t=5 s ………………………………………………………………………………………….

711

20.9. Contours of Stream Function at t=5 s …………………………………………………………………………………….

712

20.10. Contours of Liquid Fraction at t=5 s …………………………………………………………………………………….

713

21.1. Problem Schematic ……………………………………………………………………………………………………………

716

21.2. Mesh Display of the Fluidized Bed ………………………………………………………………………………………..

718

21.3. Initial Volume Fraction of Granular Phase (solids) …………………………………………………………………….

743

21.4. Plot of Mixture-Averaged Heat Transfer Coefficient in the Cell Next to the Heated Wall Versus Time …..

745

21.5. Contours of Static Pressure ………………………………………………………………………………………………….

746

21.6. Contours of Volume Fraction of Solids ……………………………………………………………………………………

747

22.1. Problem Schematic ……………………………………………………………………………………………………………

750

22.2. Velocity Magnitude on the Symmetry Plane ……………………………………………………………………………

751

22.3. Contours of Total Displacement ……………………………………………………………………………………………

763

23.1. Problem Schematic ……………………………………………………………………………………………………………

766

23.2. Steady-State Velocity Magnitude ………………………………………………………………………………………….

767

23.3. Duct with Mirroring …………………………………………………………………………………………………………..

768

23.4. Contours of Velocity Magnitude …………………………………………………………………………………………..

792

23.5. Contours of Total Displacement ……………………………………………………………………………………………

792

23.6. The Mesh of the Displaced Flap ……………………………………………………………………………………………

793

24.1. Mesh Close to the Cylinder Surface ……………………………………………………………………………………….

797

24.2. Contours of Velocity Magnitude …………………………………………………………………………………………..

797

24.3. Adjoint Observables Dialog Box …………………………………………………………………………………………..

798

24.4. Manage Adjoint Observables Dialog Box ……………………………………………………………………………….

799

24.5. Create New Observable Dialog Box ……………………………………………………………………………………….

799

24.6. Manage Observables Dialog Box ………………………………………………………………………………………….

800

24.7. Adjoint Observables Dialog Box …………………………………………………………………………………………..

801

24.8. Adjoint Solution Controls Dialog Box …………………………………………………………………………………….

802

24.9. Adjoint Residual Monitors Dialog Box ……………………………………………………………………………………

804

24.10. Run Adjoint Calculation Dialog Box ……………………………………………………………………………………..

805

24.11. Residuals for the Converged Solution ………………………………………………………………………………….

805

24.12. Adjoint Reporting Dialog Box …………………………………………………………………………………………….

806

24.13. Contours Dialog Box When Plotting Adjoint Fields …………………………………………………………………

807

24.14. Adjoint Sensitivity to Body Force X-Component Contours ……………………………………………………….

808

24.15. Vectors Dialog Box …………………………………………………………………………………………………………..

809

24.16. Shape Sensitivity Colored by Sensitivity to Mass Sources (Cell Values) ………………………………………..

810

24.17. The Design Tool Dialog Box ……………………………………………………………………………………………….

811

24.18. Morphing Region Around Cylinder ……………………………………………………………………………………..

812

24.19. The Design Tool Dialog Box Objectives Tab …………………………………………………………………………..

813

24.20. Morphing Preview of Cylinder ……………………………………………………………………………………………

819

24.21. Mesh After Deformation ……………………………………………………………………………………………………

820

25.1. Schematic of the Battery Cell Problem …………………………………………………………………………………..

824

25.2. Model Options ………………………………………………………………………………………………………………….

827

25.3. Conductive Zones ……………………………………………………………………………………………………………..

829

25.4. Electric Contacts ……………………………………………………………………………………………………………….

830

25.5. Residual History of the Simulation ………………………………………………………………………………………..

841

25.6. Report Plot of Discharge Curve at 1 C ……………………………………………………………………………………

841

25.7. History of Maximum Temperature in the Domain …………………………………………………………………….

842

25.8. Contour Plot of Phase Potential for the Positive Electrode …………………………………………………………

844

25.9. Contour Plot of Phase Potential for the Negative Electrode ………………………………………………………..

845

25.10. Contour Plot of Temperature ……………………………………………………………………………………………..

847

25.11.Vector Plot of Current Density …………………………………………………………………………………………….

848

25.12. NTGK Model: Discharge Curves …………………………………………………………………………………………..

849

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

xvii

vk.com/club152685050Tutorial Guide | vk.com/id446425943

25.13. NTGK Model: Maximum Temperature in the Domain ………………………………………………………………

850

25.14. Battery Pulse Discharge …………………………………………………………………………………………………….

851

25.15. Internal Short Circuit Region Marked for Patching ………………………………………………………………….

853

25.16.The Vector Plots of Current at the Positive Current Collectors ……………………………………………………

857

25.17.The Vector Plots of Current at the Negative Current Collectors ………………………………………………….

857

25.18. Contour Plot of Temperature ……………………………………………………………………………………………..

858

26.1. Schematic of the Battery Pack Problem ………………………………………………………………………………….

864

26.2. Model Options ………………………………………………………………………………………………………………….

867

26.3. Conductive Zones ……………………………………………………………………………………………………………..

869

26.4. Electric Contacts ……………………………………………………………………………………………………………….

870

26.5. Residual History of the Simulation ………………………………………………………………………………………..

882

26.6. Surface Report Plot of Discharge Curve at 200W ……………………………………………………………………..

882

26.7. Volume Report Plot of Maximum Temperature in the Domain ……………………………………………………

883

26.8.Vector Plot of Current Density ………………………………………………………………………………………………

885

26.9. Contour Plot of Temperature ……………………………………………………………………………………………….

887

26.10. Ohmic Heat Generation Rate ……………………………………………………………………………………………..

888

26.11. Total Heat Generation Rate ………………………………………………………………………………………………..

889

27.1. NACA0012 Structured C-Mesh Overview and Close-Up …………………………………………………………….

891

27.2. Scaled Residuals ………………………………………………………………………………………………………………..

894

27.3. Convergence of Lift and Drag Coefficients of the Rough Airfoil …………………………………………………..

894

27.4. Convective Heat Flux over the NACA0012 ………………………………………………………………………………

895

27.5. Convergence of Momentum, LWC and Average Residuals ………………………………………………………….

898

27.6. Convergence of Total Beta and Change in Total Beta Curves ………………………………………………………

898

27.7. Collection Efficiency of Monodispersed Droplets over a NACA0012 …………………………………………….

899

27.8. LWC of Monodispersed Droplets Around a NACA0012 ……………………………………………………………..

900

27.9. Collection Efficiency of Droplets with Langmuir-D Distribution over a NACA0012 ………………………….

902

27.10. LWC of Droplets with Langmuir-D Distribution Around a NACA0012 …………………………………………

902

27.11. LWC of a Langmuir D Droplet Cloud over a NACA0012 at an AoA of 4 Degrees, Showing the Shadow

Zone (Blue Region) …………………………………………………………………………………………………………………..

905

27.12. Collection Efficiency of a Langmuir D Droplet Cloud on the Surface of the Airfoil at an AoA of 4 De-

grees ……………………………………………………………………………………………………………………………………..

906

27.13. Collection Efficiency of a Langmuir D Droplet Cloud on the Surface of the Airfoil at an AoA of 4 De-

grees ……………………………………………………………………………………………………………………………………..

907

27.14. Collection Efficiency on the Surface of the Airfoil at an AoA of 4 Degrees, Langmuir D Droplet Solu-

tions ………………………………………………………………………………………………………………………………………

909

27.15. Collection Efficiency on the Surface, Langmuir D vs. Monodisperse ……………………………………………

911

27.16. Lwc Distribution and Shadow Zones for 44.4 Micron Droplets (Left) and 6.2 Micron Droplets (Right) ..

912

27.17. Mass Conservation Table Printed in the Log File of Fluent Icing …………………………………………………

914

27.18. Ice View in Viewmerical Showing Shaded + Wireframe, -25 °C …………………………………………………..

915

27.19. Ice View in Viewmerical Showing Metallic + Smooth, , -7.5 °C ……………………………………………………

916

27.20. Ice Shapes at -25, -10, and -7.5 C ………………………………………………………………………………………….

917

27.21. Film Height Variation over the Ice at -25, -10, and -7.5 C …………………………………………………………..

918

27.22. Ice View with CFD-Post, Ice Cover ………………………………………………………………………………………..

921

27.23. Ice View in CFD-Post, Ice Cover with Display Mesh ………………………………………………………………….

922

27.24. Ice View in CFD-Post, Instantaneous Ice Growth over Ice Cover Surface ………………………………………

923

27.25. 2D-Plot in CFD-Post, Clean Wall Surface and Ice Cover Surface ………………………………………………….

924

27.26. 2D-Plot in CFD-Post, Water Film Distribution …………………………………………………………………………

925

27.27. 3-Shots Ice Shape at -7.5 C …………………………………………………………………………………………………

927

27.28. Ice Shapes at -7.5 C, Obtained Using One Shot and Three Shots Computations …………………………….

928

27.29. Ice View in CFD-Post, Final Ice Shape ……………………………………………………………………………………

930

27.30. Ice View in CFD-Post, Instantaneous Ice Growth over Ice Cover Surface, Final Ice Shape …………………

931

27.31. 2D-Plot in CFD-Post, Ice Shapes of the Multishot Simulation …………………………………………………….

932

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

xviii

of ANSYS, Inc. and its subsidiaries and affiliates.

vk.com/club152685050 | vk.com/id446425943

List of Tables

1. Mini Flow Chart Symbol Descriptions ………………………………………………………………………………………..

xxii

2.1. View Manipulation Instructions ……………………………………………………………………………………………….

42

7.1. Values for the Principle Direction Vectors …………………………………………………………………………………

253

7.2. Values for the Viscous and Inertial Resistance ……………………………………………………………………………

253

12.1. Meaning of Values ……………………………………………………………………………………………………………..

436

15.1. Selected Species ……………………………………………………………………………………………………………….

512

15.2. Selected Site and Solid Species …………………………………………………………………………………………….

514

15.3. Reaction Parameters ………………………………………………………………………………………………………….

515

15.4. Properties of Species ………………………………………………………………………………………………………….

518

15.5. Properties of Species ………………………………………………………………………………………………………….

519

17.1. Ink Chamber Dimensions ……………………………………………………………………………………………………

598

27.1. Flight Condition Table ………………………………………………………………………………………………………..

892

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

of ANSYS, Inc. and its subsidiaries and affiliates.

xix

vk.com/club152685050 | vk.com/id446425943

Release 2019 R1 — © ANSYS,Inc.All rights reserved.- Contains proprietary and confidential information

xx

of ANSYS, Inc. and its subsidiaries and affiliates.

Соседние файлы в предмете Информатика

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Запуск решателя ANSYS Fluent

Для запуска решателя ANSYS Fluent необходимо подключиться к вычислительному кластеру. Запуск пакета производится через очередь задач.

Внимание! Никогда не запускайте свои программы без использования очереди задач, это может повлечь сбой вычислений других пользователей.

Строка для запуска через очередь задач:

ANSYS Fluent 16

cl-run -as fluent16a -np 24 -p work test_job1 fluent.jou

ANSYS Fluent 19.2

cl-run -as fluent192a -np 36 -p quick test_job1 full3.jou

Здесь:
-as fluent16a
— профиль, используемый для запуска расчета.
  Возможные профили для ANSYS Fluent:

  • ANSYS Fluent 16 с академической лицензией (-as fluent16a)
  • ANSYS Fluent 16 с коммерческой лицензией (-as fluent16)
  • ANSYS Fluent 19.2 с академической лицензией  (-as fluent192a)
-np 24 — количество процессорных ядер, требуемое для решения задачи
-p work — очередь задач, в которой осуществляется запуск (подробнее об очередях)
test_job1 — имя задачи (без пробелов), которое будет отображаться в списке задач
fluent.jou — входной файл, используемый ANSYS Fluent

По окончании расчета в директории, из которой производился запуск, появится файл с именем slurm-<номер_задачи_в_slurm>.out, в котором содержится вся выходная информация, которую генерирует ANSYS.

Пример задачи для запуска:

В рабочей директории создайте папку для данных тестовой задачи:

mkdir fluent_test

Скопируйте пример файла fluent.jou и данных для расчета (файлы fluent.cas и fluent.dat) из папки /share/cae_samples/fluent в только что созданную папку:

cp /share/cae_samples/fluent/* fluent_test/

Перейдите в эту папку:

cd fluent_test

Для запуска академического расчета на 24 ядрах в быстрой очереди quick выполните:

cl-run -as fluent16a -np 24 -p quick test_job1 fluent.jou

Убедитесь, что задача добавилась в очередь:

squeue

We will keep fighting for all libraries — stand with us!

Internet Archive Audio

Live Music Archive

Librivox Free Audio

Featured

  • All Audio
  • This Just In
  • Grateful Dead
  • Netlabels
  • Old Time Radio
  • 78 RPMs and Cylinder Recordings

Top

  • Audio Books & Poetry
  • Computers, Technology and Science
  • Music, Arts & Culture
  • News & Public Affairs
  • Spirituality & Religion
  • Podcasts
  • Radio News Archive

Images

Metropolitan Museum

Cleveland Museum of Art

Featured

  • All Images
  • This Just In
  • Flickr Commons
  • Occupy Wall Street Flickr
  • Cover Art
  • USGS Maps

Top

  • NASA Images
  • Solar System Collection
  • Ames Research Center

Software

Internet Arcade

Console Living Room

Featured

  • All Software
  • This Just In
  • Old School Emulation
  • MS-DOS Games
  • Historical Software
  • Classic PC Games
  • Software Library

Top

  • Kodi Archive and Support File
  • Vintage Software
  • APK
  • MS-DOS
  • CD-ROM Software
  • CD-ROM Software Library
  • Software Sites
  • Tucows Software Library
  • Shareware CD-ROMs
  • Software Capsules Compilation
  • CD-ROM Images
  • ZX Spectrum
  • DOOM Level CD

Books

Books to Borrow

Open Library

Featured

  • All Books
  • All Texts
  • This Just In
  • Smithsonian Libraries
  • FEDLINK (US)
  • Genealogy
  • Lincoln Collection

Top

  • American Libraries
  • Canadian Libraries
  • Universal Library
  • Project Gutenberg
  • Children’s Library
  • Biodiversity Heritage Library
  • Books by Language
  • Additional Collections

Video

TV News

Understanding 9/11

Featured

  • All Video
  • This Just In
  • Prelinger Archives
  • Democracy Now!
  • Occupy Wall Street
  • TV NSA Clip Library

Top

  • Animation & Cartoons
  • Arts & Music
  • Computers & Technology
  • Cultural & Academic Films
  • Ephemeral Films
  • Movies
  • News & Public Affairs
  • Spirituality & Religion
  • Sports Videos
  • Television
  • Videogame Videos
  • Vlogs
  • Youth Media

Search the history of over 806 billion
web pages
on the Internet.

Search the Wayback Machine

Search icon
An illustration of a magnifying glass.

Mobile Apps

  • Wayback Machine (iOS)
  • Wayback Machine (Android)

Browser Extensions

  • Chrome
  • Firefox
  • Safari
  • Edge

Archive-It Subscription

  • Explore the Collections
  • Learn More
  • Build Collections

Save Page Now

Capture a web page as it appears now for use as a trusted citation in the future.

Please enter a valid web address

  • About
  • Blog
  • Projects
  • Help
  • Donate
  • Contact
  • Jobs
  • Volunteer
  • People

  • About
  • Blog
  • Projects
  • Help
  • Donate

    Donate icon
    An illustration of a heart shape

  • Contact
  • Jobs
  • Volunteer
  • People

Bookreader Item Preview

Flag this item for

  • Graphic Violence

  • Explicit Sexual Content

  • Hate Speech

  • Misinformation/Disinformation

  • Marketing/Phishing/Advertising

  • Misleading/Inaccurate/Missing Metadata

texts

ANSYS Fluent Users Guide

Topics
engineer
Collection
manuals_contributions; manuals; additional_collections
Language
English

ansys 18.1 manual

Addeddate
2018-01-23 20:50:14
Identifier
ANSYSFluentUsersGuide
Identifier-ark
ark:/13960/t9z09kc86
Ocr
ABBYY FineReader 11.0 (Extended OCR)
Ppi
300
Scanner
Internet Archive HTML5 Uploader 1.6.3

plus-circle Add Review

comment

Reviews

There are no reviews yet. Be the first one to
write a review.

4,287

Views

2
Favorites

DOWNLOAD OPTIONS


download 1 file

ABBYY GZ download


download 1 file

DAISY download

For print-disabled users


download 1 file

EPUB download


download 1 file

FULL TEXT download


download 1 file

ITEM TILE download


download 1 file

KINDLE download


download 1 file

PDF download


download 1 file

SINGLE PAGE PROCESSED JP2 ZIP download


download 1 file

TORRENT download

download 11 Files

download 6 Original

SHOW ALL

IN COLLECTIONS

Manuals: Contributions Inbox

The Manual Library

Additional Collections

Uploaded by

irving09

on January 23, 2018

SIMILAR ITEMS (based on metadata)

Terms of Service (last updated 12/31/2014)

Понравилась статья? Поделить с друзьями:
  • Как включить автоматику на газовом котле пошаговая инструкция видео
  • Как заказать товар на озон пошаговая инструкция
  • Кларитромицин инструкция по применению капсулы по 500
  • Акфикс клей двухкомпонентный 705 инструкция по применению
  • Натрий хлорид инструкция по применению уколы внутривенно