Avr studio руководство на русском

  • 11.01.2011 14:04

  • Родительская категория: Статьи

  • Категория: Программирование
  • Просмотров: 193239

winavr{nomultithumb}По договоренности с редакцией журнала Радиолюбитель публикую ввсе главы из своей полунаписанной ненапечатанной книги.

Задумывалась эта книга как справочное руководство по avr-libc, и большая ее часть состояла из моих собственных переводов оригинальной документации WinAVR, однако потом я пополнил ее кратким введением в язык Си, описанием основ работы с IDE AVR Studio, затем добавил описание различных вспомогательных утилит и, таким образом, получил винегрет, который все издательства отказались печатать.Ну а переделывать все мне было лень…

{ads2}В итоге все написанное публиковалось в течение 2010 и 2011 годов в журнале, а теперь журнальные статьи в виде PDF-файлов я размещаю здесь для всех желающих.

Приношу свои извинения за несколько «рваный» стиль изложения и отсутствие многих полезных вещей, например, примеров программ и т.п. — увы, это хотя и было задумано, так и не было реализовано.

{ads1}

Вложения:

Файл Описание Размер файла:
Скачать этот файл (AVR_01-2010.pdf)AVR_01-2010.pdf Предисловие, Основы языка Си (начало) 314 Кб
Скачать этот файл (AVR_02-2010.pdf)AVR_02-2010.pdf Основы Си (продолжение) 299 Кб
Скачать этот файл (AVR_03-2010.pdf)AVR_03-2010.pdf Основы Си (продолжение) 314 Кб
Скачать этот файл (AVR_04-2010.pdf)AVR_04-2010.pdf WinAVR + AVR Studio (Установка, описание интерфейса) 2021 Кб
Скачать этот файл (AVR_05-2010.pdf)AVR_05-2010.pdf AVR Studio (описание интерфейса — продолжение) 1088 Кб
Скачать этот файл (AVR_06-2010.pdf)AVR_06-2010.pdf AVR Studio (работа с проектом) 1347 Кб
Скачать этот файл (AVR_07-2010.pdf)AVR_07-2010.pdf AVR Studio (отладка) 981 Кб
Скачать этот файл (AVR_08-2010.pdf)AVR_08-2010.pdf Обзор дополнительных средств (утилиты, программаторы, отладчики — кратко) 1474 Кб
Скачать этот файл (AVR_09-2010.pdf)AVR_09-2010.pdf AVR-GCC (особенности, файлы, параметры командной строки) 328 Кб
Скачать этот файл (AVR_10-2010.pdf)AVR_10-2010.pdf AVR-LIBC (alloca.h, assert.h, ctype.h, errno.h, inttypes.h, math.h, setjmp.h, stdint.h) 338 Кб
Скачать этот файл (AVR_11-2010.pdf)AVR_11-2010.pdf AVR-LIBC (stdio.h) 385 Кб
Скачать этот файл (AVR_12_2010.pdf)AVR_12_2010.pdf AVR-LIBC (stdlib.h, string.h) 328 Кб
Скачать этот файл (AVR_01_2011.pdf)AVR_01_2011.pdf AVR-LIBC (boot.h, eeprom.h, fuse.h, interrupt.h, pgmspace.h) 301 Кб
Скачать этот файл (AVR_02_2011.pdf)AVR_02_2011.pdf AVR-LIBC (power.h, sfr_defs.h, sleep.h, version.h, atomic.h, crc16.h, wdt.h, delay.h, delay_basic.h, parity.h, setbaud.h) 272 Кб
Скачать этот файл (AVR_03_2011.pdf)AVR_03_2011.pdf Распределение памяти в AVR-GCC 326 Кб
Скачать этот файл (AVR_04_2011.pdf)AVR_04_2011.pdf Ассемблерные модули и вставки 188 Кб
Скачать этот файл (AVR_05_2011.pdf)AVR_05_2011.pdf Ассемблерные модули и вставки (продолжение) 247 Кб

Добавить комментарий

Обсудить эту статью на форуме (19 ответов).

Copyright 2019 © simple-devices.ru.
При использовании материалов ссылка на simple-devices.ru обязательна.

Каждый человек, который только начинает осваивать программирование микроконтроллеров, да и вообще программирование, упирается сразу в несколько вопросов:
1. Какой микроконтроллер выбрать для максимально быстрого освоения?
2. Какой основной инструмент (программу) использовать для начала работы?
3. Какие аппаратные средства доступны для начала программирования?
4. Какую литературу использовать?
5. Где общаться и получать вразумительные советы?

Когда я начинал, то сам столкнулся с этими вопросами. Начал искать литературу и решил, что надо начинать с PIC-ов. Перевес в сторону PIC-ов определился из за небольшого количества команд микропроцессоров среднего семейства  — всего 35 против 136 у AVR, и наличием IDE  — интегрированной среды разработки MPLAB. К сожалению, до последнего времени для микроконтроллеров AVR не было удобной интегрированной среды разработки, многие пользовались AVR Studio 4, кто то писал на C в IAR, для отладки пользовались дополнительными программами, все зависило от личных приоритетов.

В этом году компания ATMEL наконец то «родила» IDE — AVR Studio 5 для программирования микроконтроллеров AVR. Много критических замечаний было сказано в адрес этой программы, но она существует и работает, возможно, компания со временем учтет все критические замечания, и сделает программу более гибкой, совершенной и не такой большой по размеру. Конечно по объему это монстр — инсталлируемый файл занимает 600 с лишним МБайт. Но, есть в ней и определенные удобства в работе, и не только для начинающих! Программа ориентирована для работы в среде C, но ассемблер поддерживается полностью.

Содержание статьи / Table Of Contents

1. Выбор микроконтроллера определяется теми задачами, которые вы перед собой поставили. Микроконтроллеры AVR имеют «избыточный» набор команд, и поэтому большинство программистов используют в среднем около 40 инструкций, редко прибегая к остальным. С другой стороны, когда требуется нетипичное решение, дополнительные команды могут оказаться весьма кстати, позволяя значительно сократить объем программы.
Технология производства микроконтроллеров сегодня одинакова как для PIC так и для AVR  — RISC (Reduced Instruction Set Computer) — микроконтроллеры с сокращенным набором команд. Большинство из них имеют флеш-память, которая позволяет многократно их перезаписывать. Кроме этого микроконтроллеры AVR работают в 4 раза быстрее микроконтроллеров PIC.

2. Для начала, чтобы начать писать программы, нужно скачать интегрированную среду разработки AVR Studio 5
(Прямая ссылка на

as5installer-5.0.1163-full.exe (602Mb)

, будет работать, пока не смениться билд.)
А чтобы наглядно видеть результат своей работы, не используя паяльник или макетную плату достаточно установить программу Proteus v7.7

3. AVR Studio 5 поддерживает программатор STK-500, инструкции по сборке которого, можно легко найти в просторах всемирной паутины.

4. Рекомендую книгу: Джон Мортон. «Микроконтроллеры AVR. Вводный курс».

5. Советы вы можете получать на любом форуме, где так или иначе затронуты темы по микроконтроллерам. Главное на форумах правильно формулировать вопросы, чтобы четко получать ответы. Абстрактные вопросы не приветствуются, и скорее всего вместо ответа вы получите жесткую критику, или ваш вопрос останется без внимания!
Скачать AVR Studio 5 можно, например, с официального сайта после бесплатной регистрации. Proteus вместе с патчем можно найти в Сети.

Создание проекта
Примечание: AVR Studio «не любит» русских названий, поэтому проекты должны быть с английской транскрипцией. Старайтесь размещать проекты по кратчайшему пути к основному диску, избегать ветвлений в путях доступа к файлам проекта.

Запускаем программу, после некоторого «молчания» появляется окно:

В левом верхнем углу кликаем New Project…

Выбираем наверху AVR Assembler
В строке Name: пишем имя проекта (я написал Pracsis, вы можете Praxis или что то наподобие…)
В строке Location: путь и место хранения файлов проекта (в том числе файлы .asm и .hex)
Имя проекта введенное в строке Solution name: будет выводится в меню при старте (я эту строку не трогаю, чтобы не путаться)

кликаем OK
Появляется окно выбора микроконтроллера (Device Selection)

Выбираем контроллер (я выбрал ATtiny2313A)
кликаем ОК
Появляется станица редактора

Все наши файлы можно посмотреть в Моих документах (по умолчанию, если при создании проекта путь к файлам был изменен, то ищем их там, где вы их указали в строке Location:)

В папке Debug находится скомпилированный .hex файл, который нам будет нужен для прошивки микроконтроллера.

Теперь мы готовы, чтобы начать писать программу. Но для того, чтобы правильно писать, нужно соблюдать определенные правила.
В следующей статье рассмотрим, как это сделать…

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

В этом материале вы узнаете, как использовать AVR IDE для создания проектов, базовых схем и программирования ваших цепей.

Содержание

  • Комплектующие
  • Схема
  • Как установить AVR Studio
  • Как установить WINAVR
  • Как подключить USBASP и установить драйвер для Windows
  • Как настроить Atmel Studio 7 и WinAVR
  • Создание первого проекта
  • Заключение

Комплектующие

Микроконтроллеры AVR имеют некоторые преимущества по сравнению с другими аналогичными микросхемами, включая более высокую MIPS и более дружественную архитектуру. В этой статье мы узнаем, как использовать AVR IDE, как создать исполняемый проект, построить базовую схему AVR, а затем запрограммировать ее. Для этого нам понадобится набор компонентов, а также некоторое программное обеспечение.

Оборудование:

  • ATMEGA168 DIP IC x 1
  • Кварцевые резонаторы, кристалл (4-20 МГц) x 1
  • 20 пФ конденсатор x 2
  • 680 резистор x 1
  • 5.6K резистор x 1
  • Светодиод LED x 1
  • Источник 5 В (цепь 7805, плавное регулирование и т.д.) x 1
  • Провода

Программное обеспечение:

  • USBASP
  • WINAVR (20100110)
  • Atmel Studio 7

Схема

Построение схемы довольно простое и может быть выполнено с использованием большинства методов построения схем, включая макет, картон, монтажную плату и печатную плату.

Схема в этом проекте показывает использование простой цепи регулятора мощности (с использованием 7805), которую обеспечивает устройство ATMEGA 5В, но оказывается, что программатор USBASP обеспечивает приблизительно 3,3 В. Несмотря на это, лучше обеспечить внешнее питание, чтобы USBASP не потреблял слишком много тока из любого USB-порта.

Программатор USBASP, который я купил, также шел с конвертером, который преобразует 10-контактный разъем в более удобный 6-контактный программный разъем. Тем не менее, header использует двухрядный шаг 2,54 мм, что означает, что он не может быть подключен к макету. Чтобы обойти это, я просто подключил разъем к проводам, которые соединяются с различными пинами на макете.

Как установить AVR Studio

Устройства AVR программируются с использованием специально модифицированной Visual Studio 2015 под названием AVR Studio 7, которую можно найти на сайте AVR. Первым шагом в программировании устройств AVR является скачивание установщика (небольшого приложения, которое загружает потом необходимые файлы). После скачивания нужно запустить установщик.

Первое, что он вас спросит, будет текст лицензионного соглашения и вопрос про отправку анонимной информации. Я лично рекомендую вам не отправлять анонимные данные по ряду причин (из-за крайней паранойи).

На следующей странице спрашивается какую архитектуру вы хотите установить. Поскольку наш материал охватывает только устройства из диапазона 8-битных микроконтроллеров AVR, то это будет единственная выбранная опция. Однако, если у вас приличная скорость загрузки (у меня всего 4 Мбит/с), тогда выбор всех опций может пригодиться в будущем.

После выбора поддерживаемого устройства на следующей странице будет задан вопрос про расширения — Atmel Software Framework и примеры проектов. Убедитесь, что галочка стоит.

Следующая страница просто проверяет ваш компьютер на наличие потенциальных проблем, таких как отложенный перезапуск (из-за обновления), или если система не сможет запустить IDE. Если все проверено и ОК, жмите «Далее».

Если вы уже установили более раннюю версию AVR IDE, вы можете увидеть следующее окно. Если это так, просто нажмите «Установить».

Теперь нужно подождать пока IDE загрузит все необходимые компоненты и установит их.

После этого вам будет предложено запустить Atmel Studio 7.0. Убедитесь, что стоит галочка перед закрытием окна установки.

Как установить WINAVR

Хотя Atmel Studio 7 полезная штука для написания кода, она не самый лучший выбор, когда речь идет о программировании устройств AVR с использованием инструментов с открытым исходным кодом. Поэтому, чтобы сделать жизнь проще на этапе компиляции и/или программирования, мы будем использовать WINAVR, которая также поставляется с AVRDUDE для загрузки нашего кода на устройства Atmega. Чтобы скачать WINAVR для Windows, просто нажмите на эту ссылку и выберите исполняемый exe-файл.

После скачивания запустите установщик и просмотрите все предложенные опции, пока программа не спросит вас про место установки.

Лучшее место для установки WINAVR — это рекомендуемое расположение: C:WinAVR-20100110. Следующая опция спросит про компоненты и вы должны убедиться, что установлены все галочки (показано ниже).

После того, как кнопка установки нажата, установщик выполнит остальную часть работы, после чего установщик закроется.

Как подключить USBASP и установить драйвер для Windows

Если вы используете Windows, вам необходимо изменить драйвер USB для USBASP. Это сделать не сложно с помощью инструмента под названием Zadig. Проще говоря:

  • загрузите Zadig,
  • подключите устройство USBASP к компьютеру,
  • дождитесь пока Windows автоматически установит USBASP,
  • запустите Zadig,
  • найдите устройство USBASP в раскрывающемся списке,
  • выберите драйвер libusb-win32 (v1.2.6.0).

После того, как вы нажмете «Заменить драйвер» (или Переустановить драйвер), Zadig автоматически установит драйвер, необходимый для работы USBASP в Windows.

Как настроить Atmel Studio 7 и WinAVR

Atmel Studio 7 не будет изначально использовать WINAVR или AVRDUDE, поэтому мы должны настроить её для этого. Это может показаться пугающим, но не паникуйте; для программирования устройства AVRDUDE необходима только одна строка инструкций, и только один каталог требуется определить. Фактически, вы должны быть в состоянии скопировать и вставить код в этой статье для любого проекта на базе ATMEGA168.

Итак, первый шаг — сообщить Atmel Studio 7 какой компилятор она должна использовать. Для этого откройте Atmel Studio 7 (если она еще не открыта) и нажмите: Инструменты -> Параметры (англ.: Tools -> Options).

В открывшемся окне используйте список слева, чтобы перейти к: Набор инструментов -> Конфигурация пакета (англ.: Toolchain -> Package Configuration) и в опциях, которые теперь должны быть доступны справа, выберите Atmel AVR 8-bit (язык C) (Atmel AVR 8-bit (C language)) из раскрывающегося списка, а затем нажмите: Добавить особенность (англ.: Add Flavour).

Предполагая, что вы установили WINAVR в папку по умолчанию на диске C и что у вас та же версия, что и в WINAVR, как в этой статье, во всплывающем окне мы пишем так, как показано ниже. После заполнения полей нажмите «Добавить» (англ. add), а когда вы вернетесь в предыдущее окно, нажмите «ОК».

Atmel Studio 7 теперь может использовать WINAVR для компиляции программ AVR, но все равно не может программировать устройства. Для этого нам нужно добавить внешний инструмент в Atmel Studio 7 и настроить его для устройства ATMEGA168.

Первый шаг — перейти в: Инструменты -> Внешние инструменты (англ. Tools -> External tools). Открывшееся окно — единственное окно, необходимое для работы программатора USBASP. Скрин ниже показывает большинство деталей, которые вам нужно будет заполнить.

Поле «Аргументы» (англ. Arguments) не полностью отображает всю информацию, которая необходима, и поэтому приведу ниже то, что было заполнено:

avrdude -c usbasp -p atmega168 -U lfuse:w:0x26:m -U flash:w:$(ProjectDir)Debug$(TargetName).hex:i

Большая часть информации в этом не важна для нас, кроме двух фрагментов текста. Первый — это -p atmega168;, который говорит AVRDUDE, что мы программируем ATMEGA168. Если в вашем проекте используется другой чип, замените текст atmega168 на используемое вами устройство (например, atmega88).

Второй параметр -U lfuse:w:0x26:m, который специфичен для ATMEGA168. Эта инструкция указывает AVRDUDE настроить устройство на использование внешнего кристалла, и после программирования устройство будет работать только при подключении к схеме кристалла. Обратите внимание, что это также означает, что устройству требуется кристалл при программировании. Этот аргумент будет работать только для ATMEGA168.

Создание первого проекта

Следующая задача состоит в том, чтобы создать проект на основе AVR микроконтроллера и протестировать схему, компилятор и программатор.

Сначала перейдите в: Файл -> Создать -> Проект (англ. File -> New -> Project) и в открывшемся окне выберите: Исполняемый проект GCC C (англ. GCC C Executable Project), а в текстовом поле Имя (англ. Name) дайте любое название вашему проекту.

Следующее окно, которое должно появиться, — это окно выбора устройства. Из списка выберите Atmega168. Насколько мне известно, это окно не имеет никакого смысла, так как мы все равно передаем имя устройства в AVRDUDE вручную (пока я не могу найти способ заставить Atmel Studio 7 автоматически отправлять имя устройства в AVRDUDE через аргументы).

Результатом должен стать файл main.c, содержащий код нашей программы, который будет запускать AVR. Однако сгенерированный код ничего не делает, поэтому замените все содержимое файла main.c с помощью приведенной ниже программы (обязательно сохраните файл после ввода нового кода).

#define F_CPU 800000UL // Я использую кристалл 8 МГц

#include <avr/io.h>
#include <avr/delay.h>

int main(void){
	DDRD = 0xFF; // Сделать порт D портом выхода

	while(1){
		PORTD = 0xFF;
		_delay_ms(1000);
		PORTD = 0x00;
		_delay_ms(1000);
	}
}

Теперь пришло время скомпилировать код и загрузить его на устройство AVR. Первый шаг — убедиться, что наш проект использует компилятор WINAVR. Щелкните правой кнопкой мыши проект и выберите «Дополнительно» (англ. — Advanced) в окне свойств.

В окне «Дополнительно» убедитесь, что в поле «Набор инструментов» (англ. — Toolchain Flavour) выбран WINAVR.

Сохраните проект и скомпилируйте его, нажав: Build -> Build Solution (или нажав F7). Если все идет по плану, в окне вывода должно появиться следующее сообщение:

Build succeeded.

========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

Это означает, что наш проект успешно скомпилирован и готов к передаче на наш чип. Чтобы запрограммировать устройство, убедитесь, что USBASP подключен как к ПК, так и к цепи Atmega, к цепи подано питание и что к микросхеме подключен кристалл (в случае, если микросхема была настроена для использования внешнего кристалла).

Затем, после всего этого, нажмите: Инструменты -> USBASP (англ. Tools -> USBASP), и все будет работать автоматически.

Если все хорошо, светодиод в вашей цепи должен начать мигать. Ниже приведен вывод AVRDUDE в Atmel Studio 7, показывающий, как выглядит успешная программа.

avrdude.exe: warning: cannot set sck period. please check for usbasp firmware update.
avrdude.exe: AVR device initialized and ready to accept instructions

Reading | ################################################## | 100% 0.01s

avrdude.exe: Device signature = 0x1e9406
avrdude.exe: NOTE: FLASH memory has been specified, an erase cycle will be performed
             To disable this feature, specify the -D option.
avrdude.exe: erasing chip
avrdude.exe: warning: cannot set sck period. please check for usbasp firmware update.
avrdude.exe: reading input file "0x26"
avrdude.exe: writing lfuse (1 bytes):

Writing | ################################################## | 100% 0.00s

avrdude.exe: 1 bytes of lfuse written
avrdude.exe: verifying lfuse memory against 0x26:
avrdude.exe: load data lfuse data from input file 0x26:
avrdude.exe: input file 0x26 contains 1 bytes
avrdude.exe: reading on-chip lfuse data:

Reading | ################################################## | 100% 0.00s

avrdude.exe: verifying ...
avrdude.exe: 1 bytes of lfuse verified
avrdude.exe: reading input file "c:usersrobinlaptopDocumentsAtmel Studio7.0OurFirstAVROurFirstAVRDebugOurFirstAVR.hex"
avrdude.exe: writing flash (184 bytes):

Writing | ################################################## | 100% 0.11s

avrdude.exe: 184 bytes of flash written
avrdude.exe: verifying flash memory against c:usersrobinlaptopDocumentsAtmel Studio7.0OurFirstAVROurFirstAVRDebugOurFirstAVR.hex:
avrdude.exe: load data flash data from input file c:usersrobinlaptopDocumentsAtmel Studio7.0OurFirstAVROurFirstAVRDebugOurFirstAVR.hex:
avrdude.exe: input file c:usersrobinlaptopDocumentsAtmel Studio7.0OurFirstAVROurFirstAVRDebugOurFirstAVR.hex contains 184 bytes
avrdude.exe: reading on-chip flash data:

Reading | ################################################## | 100% 0.10s

avrdude.exe: verifying ...
avrdude.exe: 184 bytes of flash verified

avrdude.exe: safemode: Fuses OK

avrdude.exe done.  Thank you.

Заключение

Начало работы с устройствами AVR может показаться несколько сложным, если вы не используете официальный программатор, который может работать «из коробки» с Atmel Studio 7. Однако в инструментах программирования требуется определить только одну командную строку (тип устройства, биты и т.п.). И все будущие проекты могут использовать один и тот же инструмент/компилятор, который нужно настроить только один раз.

Т.е. следующий проект ATMEGA168, который вы будете делать, сможет использовать тот же компилятор и внешний инструмент, что и в этом проекте и не потребуется никаких дополнительных настроек. Конечно, в более сложных проектах может потребоваться замена бит (англ. fuse), например, но в данном материале я хотел просто помочь вам освоить работу с устройствами AVR.

24 июля 2019 в 15:56
| Обновлено 7 ноября 2020 в 01:20 (редакция)
Опубликовано:

Статьи, AVR

Для работы с AVR Studio 4 необходимо само собой её установить. Если она уже установлена, то можете пропустить этот шаг.

Установка:
создаешь каталог c:/avr/ – тут будут лежать рабочие программы.
создаешь каталог например c:/works/ – тут будут лежать твои работы.
надо что бы были короткие пути, что бы не было проблем с ними.

Дальше, качаешь и устанавливаешь в каталог c:/avr/
WinVR
AVRStudio4_SP3

Есть вообще AVRStudio5 но и AVRStudio4 пока вполне хватает.

Вся работа будет проходить в AVRStudio4, WinAVR нужна только из-за библиотеки AVR-GCC (Для того, что бы можно было писать на Си)
НО! первым надо установить именно WinAVR , иначе библиотека AVR-GCC не подцепится.

Дальше запускаешь AVRStudio4 и создаешь проект.

Тут думаю разберешься.
AVR-GCC для того, что бы писать на Си
Atmel Avr Assembler соответственно для ассемблера.

Начинать разбираться с МК лучше с нуля. А это значит с Ассемблера, значит создаешь тот, который Atmel AVR Assembler.

Потом выбирай микроконтроллер Atmega8.

дальше нужно выбрать симулятор. выбирай: AVR Simulator -> Amega8

ну теперь нажимай финишь.

когда создастся проект, будет большой, белый, чистый лист. тут будет код.

немного про содержимое этого листа

“комментарии” – это текст, пропускаемый компилятором, при компиляции.
перед началом комментария должен стоять спец символ, пользуюсь символом ; “точка с запятой”, есть еще “дабл сшеш” (//),
вот примеры комментариев


/*
* Комментарий такого види(многострочный), 
* обычно используется для 
* сопроводительной информции 
* об исходном коде, т.е.
* название, разработчик и т.д.
*/

NOP  // Такой комментарий в основном используется для пояснения назначения команды, или куска кода
SLEEP ; такой комментарий тоже как и предыдущий, можно использовать для пояснения (для заметок) в коде

команды записываются в каждой строчке. т.е. одна команда – одна строчка.
допустим есть команды с двумя “параметрами”, с одним, или без ничего


MOV R16, R17 ; два параметра
INC R16      ; один параметр
SEI          ; без параметров

С этим все ясно. дальше сложнее. Каждая команда, имеет размер 1, 2 или 3 байта.


MOV R16, R17 ; три байта
INC R16      ; два байта
SEI          ; один байт

Видите связь размера команды с параметрами?

У каждого микроконтроллера свой ассемблер, хотя мнимоника у них похожа, т.е. команда MOV у мк одной серии будет выглядеть в машинном коде допустим 0x12 а у другого 0x55.
что бы при компиляции, скомпилировалось в нужном нам коде мы должны сказать компилятору, для какого мк у нас пишется программа.
это вообще выбирается при создании проекта.
По этому мы выбрали микроконтроллер Atmega8.

Но и тут не все. для облегчения нашей жизни, в AVRStudio4 есть набор констант, которые именуются вроде как “Макроассемблер”.

Для тог, что бы их подгрузить нужно в начале кода вставить строчку


.include "m8def.inc"
// командой .include, мы подгрузили файл m8def.inc
;и теперь нам станет легче ;)

в самом начале кода, ставится таблица прерываний. Что это такое и как это работает, объясню в другой заметке. Но а пока, будем писать её так:


RJMP RESET		 ; Reset Handler
		RETI;	RJMP EXT_INT0	 ; IRQ0 Handler
		RETI;	RJMP EXT_INT1	 ; IRQ1 Handler
		RETI;	RJMP TIM2_COMP	 ; Timer2 Compare Handler
		RETI;	RJMP TIM2_OVF	 ; Timer2 Overflow Handler
		RETI;	RJMP TIM1_CAPT	 ; Timer1 Capture Handler
		RETI;	RJMP TIM1_COMPA	 ; Timer1 CompareA Handler
		RETI;	RJMP TIM1_COMPB	 ; Timer1 CompareB Handler
		RETI;	RJMP TIM1_OVF	 ; Timer1 Overflow Handler
		RETI;	RJMP TIM0_OVF	 ; Timer0 Overflow Handler
		RETI;	RJMP SPI_STC	 ; SPI Transfer Complete Handler
		RETI;	RJMP USART_RXC	 ; USART RX Complete Handler
		RETI;	RJMP USART_UDRE	 ; UDR Empty Handler
		RETI;	RJMP USART_TXC	 ; USART TX Complete Handler
		RETI;	RJMP ADC		 ; ADC Conversion Complete Handler
		RETI;	RJMP EE_RDY		 ; EEPROM Ready Handler
		RETI;	RJMP ANA_COMP	 ; Analog Comparator Handler
		RETI;	RJMP TWSI		 ; Two-wire Serial Interface Handler
		RETI;	RJMP SPM_RDY	 ; Store Program Memory Ready Handler

После этого идет уже сам код


RESTART: ; маркер инициализации
MAIN: NOP  ; маркер главного цикла
RJMP MAIN

Но тут есть одна (точнее не одна, а много) особенностей.

Для удобства написания кода, для его понятности и для облегчения относительных переходов, нам подарили маркеры, как они выглядят? “RESET:” и “MAIN:” это маркеры, в их именах могут содержаться почти любые символы латинского алфавита и цифры. Маркеры не могут иметь имена функций и команд, допустим “NOP”.
Как к ним переходит? Допустим командой RJMP.

Так же, из Маркеров, можно сделать подпрограмму(процедуру), по завершению которой, мы вернемся туда, от куда её вызывали. Для вызова её, используем команду “RCALL (подпрограмма)”, а что бы вернуться из Подпрограммы(процедуры), нужно закончить её командой “RET”. У нас должен получиться такой код:


RESTART: 
MAIN: NOP
RCALL PPP1 ; вызываем подпрограмму
RJMP MAIN

PPP1: NOP
RET  ; выходим из подпрограммы

Как работает команда “RCALL”, при её вызове, адрес из какого места её вызвали, помещается в СТЕК, а по вызове команды “RET”, извлекается из регистра “стек”. СТЕК нужно инициализировать.

Что бы нам работать с нашим мк, нужно его инициализировать. т.к. мк, это устройство универсальное, в нем есть много портов ввода/вывода, и периферийных устройств. таких как УСАПП, ШИМ, ЦАП, АЦП и т.д. Первым делом в инициализации мк нужно указать начало “стека”. Инициализацию мы проводим после маркера “RESET:”.


LDI R16,HIGH(RAMEND)
OUT SPH,R16
LDI R16,LOW(RAMEND)
OUT SPL,R16

Если бы мы не вводили команду .include “m8def.inc” в начале кода, то нам пришлось бы писать так:


LDI R16,0x04
OUT SPH,R16
LDI R16,0x5f
OUT SPL,R16

Разница существенная, на мой взгляд.

СТЕК, это память магазинного типа: (последний вошедший, выходит первым).
Магазинного типа – это не супермаркет, а рожок от автомата. надеюсь все представили как в него заряжаются патроны и как они потом от туда извлекаются.
Нужно уделять очень большое внимание памяти СТЕК, т.к. любая незначительная ошибка в работе с ним, может привести к срыву стека. Это на столько важная тема, что я решил посветить ей целую тему и напишу её в отдельной заметке.

Таким образом у нас получился такой код:


.include "m8def.inc"

		RJMP RESET		 ; Reset Handler
		RETI;	RJMP EXT_INT0	 ; IRQ0 Handler
		RETI;	RJMP EXT_INT1	 ; IRQ1 Handler
		RETI;	RJMP TIM2_COMP	 ; Timer2 Compare Handler
		RETI;	RJMP TIM2_OVF	 ; Timer2 Overflow Handler
		RETI;	RJMP TIM1_CAPT	 ; Timer1 Capture Handler
		RETI;	RJMP TIM1_COMPA	 ; Timer1 CompareA Handler
		RETI;	RJMP TIM1_COMPB	 ; Timer1 CompareB Handler
		RETI;	RJMP TIM1_OVF	 ; Timer1 Overflow Handler
		RETI;	RJMP TIM0_OVF	 ; Timer0 Overflow Handler
		RETI;	RJMP SPI_STC	 ; SPI Transfer Complete Handler
		RETI;	RJMP USART_RXC	 ; USART RX Complete Handler
		RETI;	RJMP USART_UDRE	 ; UDR Empty Handler
		RETI;	RJMP USART_TXC	 ; USART TX Complete Handler
		RETI;	RJMP ADC		 ; ADC Conversion Complete Handler
		RETI;	RJMP EE_RDY		 ; EEPROM Ready Handler
		RETI;	RJMP ANA_COMP	 ; Analog Comparator Handler
		RETI;	RJMP TWSI		 ; Two-wire Serial Interface Handler
		RETI;	RJMP SPM_RDY	 ; Store Program Memory Ready Handler

RESET:	LDI R16,HIGH(RAMEND)
		OUT SPH,R16
		LDI R16,LOW(RAMEND)
		OUT SPL,R16
		RGMP RESET

MAIN: NOP  ; маркер главного цикла
RJMP MAIN

На данном этапе, можно скомпилировать проект и запустить его для отладки, но по скольку код у нас ничего не делает, можно будет выявить только синтаксические ошибки в коде.

Для правильного процесса отладки, необходимо задать эмулятору частоту, с которой будет работать МК, это делается только после компиляции и запуска отладки,
значит находим в панели меню “Build”, раскрываем её и видим “Build and Run”, после чего, мы увидим желтую стрелочку на против первой команды в нашем листинге кода. Теперь мы ищем в панели меню “Debug” и нажимаем “AVR Simulator Options”, открывается такое окно:

В котором мы можем поменять МК и его частоту, так же, на панели с права, мы видим некоторую информацию о нашем МК: его максимальную частоту, объемы памяти(EEPROM, RAM, FLASH). Теперь открываем даташит на Atmega8, на странице 203 (общий список регистров) и 205 (общий список команд) и приступай к написанию своей программы.
И запомни, не бойся экспериментировать с симулятором, он от этого не сломается!

Понравилась статья? Поделить с друзьями:
  • Вышивка полное пошаговое руководство для начинающих новейшая энциклопедия
  • Сервис мануалы скачать торрент
  • Каркас для гипсокартона на стену инструкция
  • Тилодокс для бройлеров инструкция по применению
  • Кальцид инструкция по применению цена отзывы аналоги таблетки