Частотник для трехфазного электродвигателя инструкция по применению

Преобразователь частоты — это силовой электронный блок, который является посредником между системой управления и электродвигателем. Он обеспечивает питание для двигателя, защищает его и задаёт необходимый режим работы — разгон, торможение или постоянное изменение скорости.

Для примера возьмем шлифовальный станок, который часто можно встретить в промышленном цеху или в столярной мастерской. Для качественной работы станка движение должно осуществляться в двух направлениях, скорость вращения ленты — меняться плавно, а аварийная кнопка мгновенно отключать питание. Без преобразователя частоты тут точно не обойтись.


Рис.1 Внешний вид шлифовального станка.

Подключение силовых цепей


Все провода, подключаемые к частотному преобразователю, можно разделить на 2 группы: силовые и контрольные. Рассмотрим подключение силовых.

Три провода сетевого питания 380 В, 50 Гц — клеммы R, S, T + провод заземления PE. Нейтраль частотному преобразователю не нужна. Даже если она у вас есть, подключать не нужно. А вот провода питания можно подключать в любом порядке. При необходимости чередование фаз можно изменить в программе частотника.

Три провода питания двигателя — клеммы U, V, W + провод заземления PE. На выходе напряжение может меняться от 0 до 380 В, а частота от 0 до 500 Гц. В этом и кроется смысл работы частотного преобразователя — он позволяет изменять скорость двигателя от нуля до номинального значения и даже выше, если это позволяет механика.


Рис.2 Подключение силовых цепей

Подключение цепей управления

С контрольными проводами всё несколько сложнее. Тут нужно хорошо подумать, прежде чем подключать. На выбор целая россыпь дискретных и аналоговых входов и выходов. В документации производители чаще всего публикуют стандартную схему подключения с заводскими настройками, но для каждого механизма на деле нужна своя схема и индивидуальные настройки.


Рис.3 Подключение цепей управления

У нас задача не самая сложная. Для управления шлифовальной машиной достаточно кнопок «Пуск», «Стоп», переключателя «Вперед – Назад» и переменного резистора для изменения скорости вращения, его ещё называют потенциометром.

К дискретным входам DI подключаются сигналы, которые могут принимать одно из двух состояний — «вкл» и «выкл» или логический 0 и 1. В нашей схеме это кнопки «Пуск», «Стоп», переключатель направления и аварийный «грибок». Мы будем использовать кнопки без фиксации, которые уже установлены на станке.

К аналоговым входам AI подключаются сигналы с непрерывно меняющейся величиной тока 4…20 мА или напряжения 0…10 В. Это могут быть датчики, сигналы от контроллера или другого внешнего устройства. В нашем случае — это ручка потенциометра, которая обеспечивает плавную регулировку скорости.

Потенциометр или переменный резистор — это регулируемый делитель напряжения с тремя контактами.


Рис.4 Внешний вид потенциометра

На два крайних неподвижных контакта подаётся постоянное напряжение 10 В от частотного преобразователя, а средний подвижный контакт служит для снятия текущей величины напряжения, которая зависит от положения ручки. Если ручка повернута наполовину, значит и напряжение будет только половинное = 5 В. Преобразователь пересчитает напряжение в задание скорости и разгонит двигатель.


Рис.5 Подключение потенциометра

Любой потенциометр не подойдёт, необходим с сопротивлением от 2 до 5 кОм, чтобы аналоговый вход стабильно работал. А ещё он должен быть с удобной ручкой, ведь крутить его придётся постоянно. Мощность может быть любой, даже 0,125 Вт достаточно. Идеально подойдёт XB5AD912R4K7 с сопротивлением 4,7 кОм.

На дискретные — DO и аналоговые выходы AO преобразователь выдает информацию о своем текущем состоянии, скорости или токе двигателя, достижении заданных значений или выходе за их пределы. В нашем случае выходы не используются, поэтому подключать нечего.

Настройка

Недостаточно просто подключить все провода к частотнику, его ещё нужно правильно настроить, чтобы механизм работал стабильно и долго. Для этого в частотном преобразователе несколько сотен параметров. Конечно, все настраивать не придётся, но вот основные — обязательно.

Настройка осуществляется с помощью клавиш на встроенной панели управления. С ними всё предельно просто.

Кнопка PRG отвечает за вход и выход из режима программирования. Кнопки вверх, вниз и вбок осуществляют навигацию внутри меню, а кнопка Enter — подтверждает выбор параметра или его значения.

MF.K — это дополнительная функциональная кнопка, которую можно настроить на необходимое действие, например переключение между местным и дистанционным управлением или смену направления вращения.

Зеленая и красная кнопки — это Пуск и Стоп, если управление осуществляется с панели.

Если запутались, не беда. Нужно несколько раз нажать на кнопку PRG, чтобы вернуться к исходному состоянию.


Рис.6 Внешний вид панели управления

А теперь к параметрированию

Во-первых, необходимо дать понять частотному преобразователю, какой двигатель к нему подключен. Для этого в параметры с F1-01 по F1-05 запишем значения с шильдика двигателя:

F1-01 = 1,5 кВт — номинальная мощность двигателя
F1-02 = 380 В — номинальное напряжение двигателя
F1-03 = 3,75 А — номинальный ток двигателя
F1-04 = 50 Гц — номинальная частота двигателя
F1-05 = 1400 об/мин — номинальная скорость двигателя


Рис.7 Шильдик двигателя

Теперь, когда основные данные о двигателе есть, нужно провести автонастройку. Этот процесс нужен, чтобы частотный преобразователь ещё лучше адаптировался к работе с конкретным двигателем: вычислил сопротивление и индуктивность обмоток. Так управление будет точнее, а экономия энергии — больше.

Для запуска процедуры устанавливаем F1-37 = 1 — статическая автонастройка и нажимаем кнопку «Run» на панели управления. Через пару минут дисплей переходит в исходное состояние и частотник готов к работе.

Далее переведём управление на внешние кнопки и настроим его

В нашем случае подойдёт трёхпроводное управление, где кнопка «Стоп» осуществляет разрешение на работу, кнопка «Старт» — запуск станка, а переключатель выбирает направление вращения.


Рис.8 Схема трёхпроводного управления

Настроим эти параметры:
F0-02 = 1 — управление через клеммы управления
F0-03 = 2 — задание частоты с AI1 (потенциометр)
F4-00 = 1 — пуск
F4-01 = 2 — выбор направления движения
F4-02 = 3 — разрешение работы
F4-03 = 47 — аварийный останов
F4-11 = 3 — режим трёхпроводного управления

Теперь станок начинает оживать, реагирует на нажатие кнопок и вращение ручки скорости. Остаётся настроить время разгона, торможения и проверить на практике удобство использования. Наш частотный преобразователь настроен и готов к использованию!

Защита и безопасность

Преобразователь частоты — умное устройство. После настройки в работу включаются все защитные функции, которые в случае аварии сберегут и сам частотник, и двигатель, и механизм.

Например, при заклинивании: преобразователь вычислит, что ток двигателя намного выше номинального, который мы установили в параметре F1-03 ранее, выдаст ошибку «Перегрузка двигателя» и отключится. Двигатель не перегреется и не сгорит, а механика останется целой.

А если возникла угроза здоровью оператора или поломки оборудования — спасет аварийная кнопка «грибок». При её нажатии преобразователь в мгновение остановит станок и отключит питание. Никто не пострадает!

Вместо заключения

Настройка частотного преобразователя — процесс увлекательный. Порой преобразователь берёт на себя не только управление двигателем, но и целой системой и может заменить даже простой контроллер. К частотнику можно подключать датчики, лампы индикации, реле и даже контакторы. Применение преобразователю можно найти везде: от насосов и конвейеров до сложных станков, подъёмников и лифтов. Главное внимательно изучать документацию и делать всё по порядку, тогда всё обязательно получится.

Ещё по теме

Настройка частотного преобразователя для регулирования давления в трубопроводе

Как настроить управление частотным преобразователем по сети Modbus

Инструкция по эксплуатации и чертежи MD310

Каталог с актуальными ценами

Частотные преобразователи используются для подключения различных электродвигателей и позволяют регулировать такие характеристики, как скорость вращения ротора, момент силы вала и защищают от перегрузок и перегрева. Также такие устройства дают возможность подключать трехфазное оборудование в однофазную систему без потери мощности и перегрева обмоток двигателя.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Содержание

  • 1 Разновидности частотных преобразователей
  • 2 Как подключить частотный преобразователь
    • 2.1 Схема подключения ПЧ
      • 2.1.1 Для трехфазного электродвигателя
      • 2.1.2 Для однофазного электродвигателя

Разновидности частотных преобразователей

Современные частотные преобразователи различаются многообразием схем, которые можно сгруппировать в несколько категорий:

  1. Высоковольтные двухтрансформаторные

Принцип работы такого прибора заключается в последовательном преобразовании напряжения при помощи понижающего и повышающего трансформатора, преобразования частоты низковольтным преобразователем, а также сглаживание пиковых перенапряжений на выходе с помощью синусоидального фильтра.  Схема работы выглядит следующим образом: питающее напряжение 6000 В подается на понижающий трансформатор и на его выходе получают 400 (660) В, далее оно подается на низковольтный преобразователь и после изменения частоты подается на повышающий трансформатор для увеличения значения напряжения до начального.

  1. Тиристорные преобразователи

Такие устройства состоят из многоуровневых частотных преобразователей на основе тиристоров. Конструктивно они состоят из трансформатора (обеспечивающего понижение питающего напряжения), диодов (для выпрямления) и конденсаторов (для сглаживания). Также для уменьшения уровня высших гармоник применяют многопульсные схемы.

Тиристорные преобразователи имеют высокий КПД до 98 % и большой диапазон выходных частот 0-300 Гц, что для современного оборудования является положительной и востребованной характеристикой.

  1. Транзисторные частотные преобразователи

Такие частотные преобразователи являются высокотехнологичными устройствами, которые собираются на транзисторах различного типа. Конструктивно они имеют транзисторные инверторные ячейки и многообмоточный сухой трансформатор специальной конструкции. Управляют таким преобразователем с помощью микропроцессора, что позволяет тонко настраивать работу оборудования и контролировать весь процесс работы различных двигателей. Транзисторные частотные преобразователи, так же, как и тиристорные, имеют высокий КПД и широкий диапазон регулирования частоты.

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем. Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь.

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Особенности и схема подключения частотного преобразователя к разным типам электродвигателей

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Обратите внимание! Частотный преобразователь может иметь дополнительные настройки, выполняемые с помощью DIP-переключателей, а также встроенным программным обеспечением.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Особенности и схема подключения частотного преобразователя к разным типам электродвигателейОсобенности и схема подключения частотного преобразователя к разным типам электродвигателей

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств. Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки.

Частотный преобразователь (ЧП) – прибор (устройство), преобразующий переменное напряжение с частотой 50 Гц в импульсное с частотой от 0 до 1000 Гц.

Плюсы и опции частотного преобразователя

С его помощью можно сделать плавным запуск двигателя и регулировать частоту его оборотов (чем больше частота на выходе ЧП, тем чаще крутится вал).

Защита двигателя от перегрузок в сети – ещё один важный плюс ЧП, как и малые потери мощности при запуске. Но главным является экономия электроэнергии (~50%)

Таким образом, частотные преобразователи применяют (по средством подключения к электрическому двигателю) с целью регулирования скорости вращения ротора, момента силы вала, а также для защиты двигателя от перегрева и перегрузок. Они же позволяют встроить трёхфазный двигатель в однофазную сеть, предохраняя его от перегрева обмоток двигателя и потерь мощности.

Для мощных двигателей подключения частотных преобразователей более актуальны (особенно при соединении звездой), поскольку от пускового тока у них выходит из строя изоляция проводов.

ЧП имеют опции:

●       пуск/Стоп;

●       плавный разгон, плавное торможение;

●       реверс;

●       варианты управления: дискретное, аналоговое, программное (кнопками, реле, датчиками, контроллером, прочими).

Подключение трехфазного двигателя через частотный преобразователь - разновидности частотников

Разновидности частотных преобразователей

Схем  современного частотного преобразователя много, но можно выделить 3 основные категории.

Двухтрансформаторные высоковольтные ЧП

Имеющиеся в частотном преобразователе трансформаторы (понижающий и повышающий), низковольтный преобразователь и синусоидальный фильтр: преобразуют соответственно напряжение, частоту и сглаживают пиковые напряжения на выходе.

Схема работы преобразователя частоты в следующем:

●       на входе напряжение подаётся на понижающий трансформатор 6 кВт;

●       после трансформатора 400 В (660) подаётся на низковольтный преобразователь;

●       с изменённой выходной частотой подаётся на повышающий трансформатор;

●       напряжение на выходе восстановлено до первоначального.

Тиристорные ЧП

В составе подобных устройств многоуровневые преобразователи на основе тиристоров. В тиристорных ЧП трансформатор понижает напряжение, диоды выпрямляют его, конденсаторы – сглаживают. Сохраняющиеся на выходе высшие гармоники вызывают шум и дополнительный нагрев двигателя. Для снижения уровня этих гармоник применяются многопульсные схемы.

Тиристорные ЧП отличаются высоким КПД (до 98%) и широким диапазоном частот на выходе (0-300 Гц). Эти качества делают их достаточно востребованными.

Транзисторные преобразователи

Более технологичные ЧП собираются на разнообразных транзисторах (соединяющихся в транзисторные инверторные ячейки). Управляет ими и трансформатором (многообмоточный, сухой) микропроцессор.

У транзисторных преобразователей тоже широкий диапазон регулируемых частот и высокий КПД.

Подключение частотного преобразователя

Сначала необходимо убедиться, что характеристики ЧП и электродвигателя подходят друг другу, и чтобы преобразователь соответствовал сетевому напряжению. Кроме того, ЧП должен соответствовать классом пыле- влаго-защищенности месту эксплуатации и чтобы были выдержаны необходимые расстояния движущихся частей от мест прохода людей и расположения аппаратуры.

Преобразователи бывают и для однофазных сетей, и для трёхфазных.

Это интересно: к однофазной сети можно подключать трёхфазный преобразователь (по схеме треугольник), оснащенный дополнительно конденсаторным блоком. Но за это приходиться расплачиваться значительным падением мощности и КПД устройства.

Трёхфазный ЧП к трёхфазной сети подключается по схеме звезда.

Внимание! ЧП могут иметь дополнительные настройки. Они осуществляются либо встроенным ПО (программным обеспечением), либо при помощи DIP-переключателей.

Общий принцип подключения преобразователей один, но с небольшими различиями в разных моделях.

Подключение ЧП к трехфазному электрическому двигателю

Общая схема подключения через ЧП:

Подключение трехфазного двигателя через частотный преобразователь - общая схема подключения через ЧП

Где UZ – преобразователь частоты;

L – сетевая фаза;

N – нулевая фаза;

u, v, w – выводы на клеммы электродвигателя;

К1 – пуск электродвигателя через реле времени;

К2 – реверс;

К3, К4 – вторая и третья скорости.

Напряжение, подаваемое на фазы, запускает вращающееся электромагнитное поле статора. Регулировка производится с панели ЧП (съёмной) или с компьютера (через аналоговые входы).

Подключение трехфазного частотника производится следующим образом:

●       на вход преобразователя подаются фазы питающего напряжения;

●       к клеммным колодкам выхода ЧП подключаются (к каждому выводу) фазные проводники;

●       получается схема звезда.

Подключение трехфазного двигателя через частотный преобразователь - схема звезда

Подключение преобразователя однофазного реализуется по схеме треугольник:

Подключение трехфазного двигателя через частотный преобразователь - схема треугольник

Подключение трехфазного двигателя через частотный преобразователь - способы подвода напряжения к обмоткам двигателя

Н1, Н2, Н3 – начала навивки каждой обмотки;

К!, К2, К3 – их концы.

Подключение осуществляется в 2 этапа:

1.     В клеммной коробке соединить клеммы по схеме треугольник.

Подключение трехфазного двигателя через частотный преобразователь - в клеммной коробке

2.     Далее провода  U1, V1 и W1 подсоединить к частотному преобразователю – соответственно к U, V, W.

Подключение трехфазного двигателя через частотный преобразователь - подключение проводов

За счёт такого рода ЧП в сеть 220 В можно подключить трехфазное устройство. Это выручает при отсутствии в помещении трехфазной сети.

Обратите внимание: если на шильдике двигателя стоит 220/380, то его можно подключить в трехфазную сеть, а если написано только 380В, то – нельзя.

Подключение трехфазного двигателя через частотный преобразователь - шильдик двигателя

Кстати из шильдика видно, что в трёх- и однофазной сетях токи будут разные – соответственно 2,9 и 5А. Эти параметры важны при подборе ЧП.

Подключение трехфазного двигателя к однофазной сети через частотник по варианту звезда-треугольник

Самым популярным осуществлением плавного пуска асинхронного двигателя считается комбинированный метод звезда-треугольник.

Он позволяет уменьшить пусковые токи и момент (для вариантов с мощностью > 5кВт).

Если не делать пуск плавным, то пусковые токи в асинхронных двигателях могут достичь уровней токов короткого замыкания.

Подключение трехфазного двигателя через частотный преобразователь - метод звезда-треугольник

Сначала работает звезда – при пуске напряжение таким образом подаётся на статор. Потом треугольник – с набором двигателем номинальной скорости напряжение переключается на него (треугольник). Переключение осуществляет реле времени. На нём устанавливается время, достаточное для набора номинальных оборотов.

Процесс подключения, настройки и запуска ЧП

Просто правильно соединить ЧП с электродвигателем – недостаточно для начала нормальной совместной их работы. ЧП необходимо настроить (проверить настройки), иначе может запуск закончиться выходом агрегата из строя. Для демонстрации подойдет любой программируемый преобразователь. В данном случае – китайский HY01-D523D, на 1,5 вКт.

Подключение трехфазного двигателя через частотный преобразователь - HY01-D523D

ЧП HY01-D523D

Сетевые фазы R, S и T (над блоком разъемов таблички с надписями) – каждая на 220 В. 

Подключение трехфазного двигателя через частотный преобразователь - сетевые фазы R S T

Поскольку нужно входное напряжение 220В, то подключения проводов возможны к любым двум фазам. В данном случае – R и T.

Далее клеммы P+ и PR – для подключения тормозного резистора, необходимого для быстрой остановки двигателя (или шпинделя). В данном случае обходятся без него, работая динамическим торможением и поджидая несколько секунд до остановки.

Фазы U, V, W – выходящие с частотника фазы по 220В (образуя 380В). Они соединены по схеме треугольника, потому что так вытекает из рисунка на крышке разъемной коробки двигателя.

Подключение трехфазного двигателя через частотный преобразователь - Реализация подключения фаз треугольником

Реализация подключения фаз треугольником

Подключение трехфазного двигателя через частотный преобразователь - схемы подключения на крышке разъемной коробки

Схемы подключения на крышке разъемной коробки – треугольник и звезда

Контакт 9 – земля.

Включая ЧП в сеть, запускаем его:

Подключение трехфазного двигателя через частотный преобразователь - настройка частотника

Настройка частотника осуществляется этими кнопками и ручкой. Главная в программировании устройства – кнопка PRGM (программирование). Нажать на неё. Кнопками стрелка вверх, стрелка вниз и >>(изменение разрядов) производятся настройки: прокруткой чисел (параметров программы), изменением разрядов.

Каждый раз после набора настройки нажать кнопку SET (аналог Enter).

Проверка первого параметра: зайдя в PRGM выставить стрелочками параметр 0 в индикаторной строке и нажать SET. Этот параметр задаёт источник команд – 0 означает, что команды даются с этой панели, если 1, то команды пойдут с колодок под панелью. Если 2 – значит, управление через порт RS485 (с компьютера).

Ниже в таблице собраны основные настройки (обязательные для проверки) этого ЧП:

Параметр

Значение

Команда

Комментарии

0

0, 1, 2

Выбор источника управления

1

0, 1, 2

Источник частоты вращения (с панели, внешним резистором, с компьютера)

3

50 Гц

Текущая частота (для первого подключения)

Для двигателя – 50, а преобразователь может работать со шпинделем ЧПУ-станка, и тогда частота 400 Гц

4

50 Гц

Базовая частота

5

50 Гц

Максимальная частота

6

2,5 Гц

Промежуточная выходная частота

7

0,5 Гц

Минимальная частота частотника

8

220В

Напряжение питания двигателя

9

15В

Промежуточное напряжение

10

Ограничение минимального напряжения

11

0

Ограничение минимальной частоты

При подключении шпинделя – 100В

14

1 сек

Время разгона двигателя

Для проверки поставить 20 сек

15

1 сек

Время торможения двигателя

Для проверки – 20 сек, для лёгких фрез – 4-7 сек

Вместо 1 сек можно установить 4, так как не рекомендуется слишком маленькое время

26

0, 1

Режим торможения: 0 – тормозим снижением частоты, 1 – торможение на выбеге

При подключении шпинделя установить 1

41

0-15

Установка несущей частоты шин

Чем тише, тем больше помехи и нагрев ЧП

141

220В

Номинальное напряжение двигателя

142

Номинальный ток двигателя

Лучше выставить 80-90% от того, что написано на шильдике

143

4

Количество полюсов двигателя

Для шпинделя – 2

144

1400

Частота оборотов

Для шпинделя – 3000

Длина кабеля между частотником и двигателем – не больше 15 метров для частоты 20 кГц, 30 м для 15 кГц, 50 м – для 10 кГц, 100 м – для 5 кГц, 150 – для 3.

После проверки выставления всех параметров нажать кнопку RUN. В индикаторной строке появился 0, то есть установлена пока частота 0 оборотов. Поворотом ручки медленно увеличивать частоту. Двигатель (вал) начал вращаться. И так до максимума (1400 оборотов). Если двигатель работает нормально, значит всё настроено.

Нажатие на кнопку STOP приводит к быстрой остановке. Нажатие на кнопку JOG приводит к смене направления вращения, это реверс.

Обратите внимание! Лицевая панель – съёмная, и может быть удлинена на 1,5-2 метра.

Подключение трехфазного двигателя через частотный преобразователь - Двигатель, работающий с частоником

Двигатель, работающий с частоником

Обязательно! При настройке активно пользоваться прилагаемой к ЧП инструкцией.

При покупке частотных преобразователей важно получить вовремя необходимую консультацию относительно необходимых характеристик для вашей ситуации, в том числе по установке и подключению, чтобы максимально эффективно использовать ваш электродвигатель или другое трехфазное устройство.

Квалифицированную доброжелательную помощь всегда можно найти в компании “Промышленная точка”. У нас представлен внушительный ассортимент самых разных частотных преобразователей и трехфазных двигателей в широком ценовом диапазоне.

Подготовка

Установка преобразователя частоты для электромотора – процесс сложный и ответственный. Он пройдет тем проще и быстрее, чем правильнее сделан выбор частотного преобразователя. Поиск оптимального варианта устройства отталкивается от условий будущей эксплуатации. Опорные моменты следующие.

  • Место установки частотного преобразователя. От него зависит несколько важных характеристик частотника. Класс влаго- и пылезащищенности корпуса. Современные преобразователи частоты выполняются в нескольких классах – IP 20, 54, 65. Чем выше защита (первая цифра отвечает за пылезащиту, вторая – за влагонепроницаемость), тем шире возможности по выбору места установки. Модели с IP 20 монтируют только в электротехнические щиты (с автоматикой или ручной системой управления приводом), установленные в помещениях с низким уровнем влажности. Установка в корпусах IP 54 или IP 65 возможна рядом с обслуживаемым мотором.
  • Основание преобразователя частоты. Если устройство будет в зоне, удаленной от вибраций и электромагнитных полей, ему достаточно ровной твердой площадки. В противном случае монтаж может осуществляться на опорах, гасящих вибрации, или в шкафах с экранами.
  • Климатическое исполнение. Если преобразователь частоты устанавливается на открытой или частично открытой платформе, климатическое исполнение должно соответствовать максимальной и минимальной температуре окружения в теплый и холодный сезон, соответственно. При закрытом монтаже температурный режим, которому должен соответствовать прибор, задает помещение.

Состояние сети (ее напряжение ниже или равно номинальному напряжению прибора).
Параметры электродвигателя (совместимость).
Проект подключения. Это база для выбора модели.

При установке частотника в шкаф важно соблюсти отступы корпуса от стенок шкафа или других приборов, расположенных в сборке. Размеры отступов определяются индивидуально по мощности монтируемых устройств

Для отвода тепла в закрытом пространстве шкафа в него устанавливаются вентиляторы достаточной мощности (зависит от количества преобразователей частоты и других механизмов).

Схема управления

И если подключение частотного преобразователя к электродвигателю выполнить просто, достаточно только соединить соответствующие выводы, то со схемой управления все куда сложнее. Все дело в том, что возникает необходимость в программировании устройства, чтобы добиться максимально возможных регулировок от него. В основе находится микроконтроллер, к нему производится подключение считывающих устройств и исполнительных. Так, необходимо наличие трансформаторов тока, которые будут постоянно следить за мощностью, потребляемой электроприводом. И в случае превышения должно произойти отключение частотника.

Подключение трехфазного двигателя через ручной пускатель

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус  тот же, что и в предыдущей схеме – нет дистанционного включения.

Настройка частотного преобразователя для электродвигателя

Для того чтобы преобразователь частоты для асинхронного двигателя в полном объеме выполнял свои функции, его необходимо правильно подключить и настроить. В самом начале подключения в сети перед прибором размещается автоматический выключатель. Его номинал должен совпадать с величиной тока, потребляемого двигателем. Если частотник предполагается эксплуатировать в трехфазной сети, то автомат также должен быть трехфазным, с общим рычагом. В этом случае при коротком замыкании на одной из фаз можно оперативно отключить и другие фазы.

Ток срабатывания должен обладать характеристиками, полностью соответствующими току отдельной фазы электродвигателя. Если частотный преобразователь планируется использовать в однофазной сети, в этом случае рекомендуется воспользоваться одинарным автоматом, номинал которого должен в три раза превышать ток одной фазы. Независимо от количества фаз, при установке частотника, автоматы не должны включаться в разрыв заземляющего или нулевого провода. Рекомендуется использовать только прямое подключение.

При правильной настройке и подключении частотного преобразователя, его фазные провода должны соединяться с соответствующими контактами электродвигателя. Предварительно обмотки в двигателе соединяются по схеме «звезда» или «треугольник», в зависимости от напряжения, выдаваемого преобразователем. Если оно совпадает с меньшим значением, указанным на корпусе двигателя, то применяется соединение треугольником. При более высоком значении используется схема «звезда».

Далее выполняется подключение частотного преобразователя к контроллеру и пульту управления, который входит в комплект поставки. Все соединения осуществляются в соответствии со схемой, приведенной в руководстве по эксплуатации. Рукоятка должна находиться в нейтральном положении, после чего включается автомат. Нормальное включение подтверждается световым индикатором, загорающимся на пульте. Для того чтобы преобразователь заработал, нажимается кнопка RUN, запрограммированная по умолчанию.

После незначительного поворота рукоятки, двигатель начинает постепенно вращаться. Для переключения вращения в обратную сторону, существует специальная кнопка реверса. Затем с помощью рукоятки настраивается нужная частота вращения. На некоторых пультах вместо частоты вращения электродвигателя, отображаются данные о частоте напряжения. Поэтому рекомендуется заранее внимательно изучить интерфейс установленной аппаратуры.

Пульт управления

Частотный регулятор управляется с пульта (ПУ), который идет в комплекте с прибором. Для подключения ПУ частотника необходимо монтировать в удобном месте по схеме в инструкции пользователя. После монтажа рукоять ПУ ставится в нулевое положение и дается команда RUN. Следующий шаг – плавный поворот рукояти на минимальный градус:

  • Если после подключения частотного преобразователя к двигателю, последний вращается в правильную сторону, можно регулировать скорость. Здесь стоит разобраться, как этот показатель отображается на ПУ частотника. Есть 2 варианта – в оборотах/минуту или герцах. В первом случае показывается скорость вращательного движения электрического двигателя, во втором – питающее напряжение.
  • Если двигатель запустился в обратную сторону, включаем реверс на частотнике.

Монтаж частотника

Привод устанавливается на твердую ровную площадку из негорючего материала в месте, недоступным для прямых лучей солнца. Сложность работ по установке прибора зависит от него самого (чем выше мощность и больше функций, тем сложнее схема подключения частотного преобразователя).

Для установки, кроме самого преобразователя частоты, потребуются соединительные провода, крепежи, инструмент для подготовки технических отверстий, если они необходимы, обжимка, автоматические выключатели. Параметры выключателей должны соответствовать характеристикам выбранного частотника. Порядок действий:

  • изучить инструкцию частотного преобразователя;
  • сформировать комплект дополнительных изделий, руководствуясь рекомендациями производителя;
  • выполнить работы по настройке, перечисленные в инструкции (строго соблюдая последовательность, проверяя контакты и качество обжимки проводов, без спешки);
  • повторно проверить надежность креплений, отсутствие неизолированных проводов и т. д. (базовые пункты правил безопасности при проведении электротехнических работ).

Важный момент: сразу после подключения частотный преобразователь электродвигателя запускать нельзя. В любой инструкции есть это указание, но многие его нарушают. По статистике, такое действие – самая распространенная причина негарантийного ремонта нового преобразователя частоты.

Вторая распространенная ошибка – использование автоматики, не рассчитанной на уровень потребления электродвигателя, к которому подключается частотник. Это приводит к подвижности биметаллической пластины, хаотичным разъединениям цепи и повреждению механизма.

Подключение, настройка

Схема подключения частотника предполагает установку перед ним автоматического выключателя. В идеале последний должен работать с током, равным номинальному потреблению электромотора. Если в каталоге нужного выключателя преобразователя частоты не нашлось, надо брать аналог, приближенный к номинальному току электродвигателя.

Количество фаз, на которое рассчитана автоматика, выбирается по частотнику:

  • Для трехфазного устройства берется 3-фазный выключатель с общим рычагом. Последний обеспечит обесточивание сети при угрозе (факте) короткого замыкания в одной из фаз. Ток срабатывания равен току 1 фазы электродвигателя.
  • Для однофазного частотного преобразователя нужен одинарный автомат. Ток срабатывания равен току 1 фазы, умноженному на 3. Подключение – напрямую.

При настройке нужно соединить в электрическом двигателе обмотки (схема – «звезда» или «треугольник» в зависимости от характера напряжения). Затем фазные провода привода соединяются с контактами электродвигателя по схеме подключения частотника.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Временные диаграммы работы схемы “Звезда-Треугольник”

С привязкой к моей схеме управления, диаграммы включения контакторов:

Временные диаграммы схемы управления звезда-треугольник

Тут вроде всё понятно, но есть одно важное замечание. Ещё раз

Между зеленой и красной областями обязательно нужен небольшой зазор (пауза). Его может не быть (пауза = 0), но эти области могут налазить друг на друга, если используются контакторы с катушкой постоянного тока (=24 VDC).  В особенности при использовании обратновключенного диода (а он обязателен!), время выключения может быть больше времени включения в 7-10 раз!

Это я к тому, что однажды мучался с такой схемой, в ней выбивал периодически вводной автомат. Поставили спец.реле с паузой, проблема была решена!

Подключение асинхронного двигателя

Трехфазный переменный ток

Электрическая сеть трехфазного переменного тока получила наиболее широкое распространение среди электрических систем передачи энергии. Главным по сравнению с однофазной и двухфазной системами является ее экономичность. В трехфазной цепи энергия передается по трем проводам, а токи текущие в разных проводах сдвинуты относительно друг друга по фазе на 120°, при этом синусоидальные ЭДС на разных фазах имеют одинаковую частоту и амплитуду.

Трехфазный ток (разница фаз 120°)

Звезда и треугольник

Трехфазная обмотка статора электродвигателя соединяется по схеме в зависимости от напряжения питания сети. Концы трехфазной обмотки могут быть: соединены внутри электродвигателя (из двигателя выходит три провода), выведены наружу (выходит шесть проводов), выведены в распределительную коробку (в коробку выходит шесть проводов, из коробки три).

Фазное напряжение – разница потенциалов между началом и концом одной фазы

Другое определение для соединения “звезда”: фазное напряжение это разница потенциалов между линейным проводом и нейтралью (обратите внимание, что у схемы “треугольник” отсутствует нейтраль)

Линейное напряжение – разность потенциалов между двумя линейными проводами (между фазами).

Звезда Треугольник Обозначение
Uл, Uф – линейное и фазовое напряжение, В,
Iл, Iф – линейный и фазовый ток, А,
S – полная мощность, Вт
P – активная мощность, Вт

Внимание: Несмотря на то, что мощность для соединений в звезду и треугольник вычисляется по одной формуле, подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Пример: Допустим электродвигатель был подключен по схеме “звезда” к трехфазной сети переменного тока Uл=380 В (соответственно Uф=220 В) и потреблял ток Iл=1 А

Полная потребляемая мощность:

S = 1,73∙380∙1 = 658 Вт.

Теперь изменим схему соединения на “треугольник”, линейное напряжение останется таким же Uл=380 В, а фазовое напряжение увеличится в корень из 3 раз Uф=Uл=380 В. Увеличение фазового напряжения приведет к увеличению фазового тока в корень из 3 раз. Таким образом линейный ток схемы “треугольник” будет в три раза больше линейного тока схемы “звезда”. А следовательно и потребляемая мощность будет в 3 раза больше:

S = 1,73∙380∙3 = 1975 Вт.

Таким образом, если двигатель рассчитан на подключение к трехфазной сети переменного тока по схеме “звезда”, подключение данного электродвигателя по схеме “треугольник” может привести к его поломке.

Если в нормальном режиме электродвигатель подключен по схеме “треугольник”, то для уменьшения пусковых токов на время пуска его можно соединить по схеме звезда. При этом вместе с пусковым током уменьшится также пусковой момент.

Подключение электродвигателя по схеме звезда и треугольник

Обозначение выводов статора трехфазного электродвигателя

Обозначение выводов обмоток статора вновь разрабатываемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза U1 U2
вторая фаза V1 V2
третья фаза W1 W2
Соединение в звезду (число выводов 3 или 4)
первая фаза U
вторая фаза V
третья фаза W
точка звезды (нулевая точка) N
Соединение в треугольник (число выводов 3)
первый вывод U
второй вывод V
третий вывод W

Обозначение выводов обмоток статора ранее разработанных и модернизируемых трехфазных машин согласно ГОСТ 26772-85

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза C1 C4
вторая фаза C2 C5
третья фаза C3 C6
Соединение звездой (число выводов 3 или 4)
первая фаза C1
вторая фаза C2
третья фаза C3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод C1
второй вывод C2
третий вывод C3

Принцип работы частотного преобразователя

Если регулировать пусковой ток исключительно механическим способом, не удастся избежать энергетических потерь и уменьшения срока службы оборудования. Показатели этого тока в пять-семь раз превышают номинальное напряжение, что недопустимо для нормальной работы оборудования.

Принцип работы современного преобразователя частоты подразумевает использование электронного управления. Они не только обеспечивают мягкий пуск, но и плавно регулируют работу привода, придерживаясь соотношения между напряжением и частотой строго по заданной формуле.

Основное преимущество устройства – экономия в потреблении электроэнергии, составляющая в среднем 50%. А также возможность регулировки с учётом потребностей конкретного производства.

Устройство функционирует по принципу двойного преобразования напряжения.

  1. Напряжение сети выпрямляется и фильтруется системой конденсаторов.
  2. Затем в работу вступает электронное управление – образуется ток с указанной (запрограммированной) частотой.

На выходе выдаются прямоугольные импульсы, которые под воздействием обмотки статора двигателя (её индуктивности) становятся близкими к синусоиде.

Для чего понадобился ПЧ

Ко мне обратился старый знакомый с обувного производства. Ему для предпродажной подготовки женских сапог требуется операция полировки, чтобы сапоги блестели.

Станок для полировки был в отвратительном состоянии, но его удалось привести в чувство, перебрав советские контакторы и подсоединив двигатели.

Тем не менее, для качественной обработки поверхности кожи было предпочтительно, чтобы линейная скорость полировки могла меняться. Кроме как ПЧ, другими способами это сделать невозможно. Замена шкивов не рассматривалась – скорость нужно менять оперативно и без инструментов.

В результате я установил преобразователь частоты Delta. Подключил и настроил его так, что можно менять обороты подключенного через него двигателя нажатием кнопок на панели управления. Дальше – подробности.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Преобразователи частоты для однофазных вентиляторов и насов

Преобразователи частоты серии 8000M помимо стандартных 3-фазных электродвигателей также способны управлять однофазными асинхронными двигателями с напряжением питания 220В

, широко преименяемыми в вентияционным и насосном оборудовании.

Для адаптации работы преобразователя с однофазным двигателем достаточно сделать настройку нескольких параметров.

Схему соединения обмоток электродвигателя менять не надо, отключать конденсатор не надо. Электродвигатель подключается к преобразователю точно также, как если бы он подключался напрямую к сети 220В.

Краткие характеристики моделей 8000М на 220В

  • Напряжение: 1ф/220В, мощность: 0.2-2.2кВт
  • Модульный, компактный дизайн, съемная панель управления
  • Монтаж на DIN-рейку
  • Аналоговый вход (0-10В/4-20мА) для задания скорости или подключения датчика обратной связи (давления, расхода, температуры и т.д.)
  • Регулируемый плавный пуск и останов вентилятора и насоса
  • Встроенный ПИД-регулятор со спящим режимом
  • Режим автоматического энергосбережения
  • 15 предустановленных скоростей с функцией автоматического пошагового управления (по заданным интервалам времени)
  • Защита двигателя от перегрузки, перегрева, заклинивания
  • Счетчик времени наработки
  • Встроенный порт RS-485. Протокол MODBUS.

Особенности работы однофазного двигателя с преобразователей частоты серии 8000M

В отличие от трехфазных электродвигателей при работе с частотным преобразователем однофазного двигателя у последнего будет меньше диапазон регулировки скорости, который составит, примерно, от половины до номинальной скорости электродвигателя, а также только однонаправленное вращение (без реверса). Реверсировать однофазный двигатель можно только за счет переключения конденсатора в другую обмотку (только если обмотки симметричны по своим параметрам).

Модели и цены

Модели с напряжением питания 220В Мощность 1-фазного двигателя (кВт) P2 (P1) * Ном. выходной ток (A) Цена (руб.) с НДС
8000M-2SR4GH 0.2 (0.4) 2.4 6622 ₽
8000M-2SR75GH 0.4 (0.75) 4.5 6990 ₽
8000M-2S1R5GH 0.75 (1.5) 7 8093 ₽
8000M-2S2R2GH 1.1 (2.2) 10 10669 ₽

Примечание:

* Мощность двигателя: P1 — входная электрическая или потребляемая мощность двигателя; P2 — выходная механическая мощность на валу двигателя или полезная мощность двигателя. Подробнее о мощности электродвигателя…

Файлы для загрузки

Преобразователи частоты серии 8000M. Каталог (рус.)

Преобразователи частоты серии 8000M. Руководство по эксплуатации (рус.)

Краткая инструкция по подключению и настройке преобразователя частоты серии 8000М при работе его с однофазным асинхронным электродвигателем (рус.)

См. также:

►OPTIDRIVE — специализированные преобразователи частоты для однофазных двигателей…

►Все модели и цены однофазных преобразователей частоты…

Классификация и виды

Все частотные преобразователи для электромоторов условно можно разделить на несколько групп:

  • Индивидуальные. Разработаны под какой-то определенный тип и характеристики мотора.
  • Универсальные. Благодаря возможности изменять параметры могут работать с различными двигателями.
  • Специализированные. Разрабатываются для конкретных типов оборудования. Например, преобразователи для насосных станций (насосов) и вентиляторов (Mitsubishi FR-F740).
  • Интеллектуальные. Имеют встроенный персональный компьютер, имеют функции самодиагностики. ПЧ сам следит за состоянием изнашиваемых частей и сообщает о необходимости из замены, когда ресурс подходит к концу.

Самые дешевые — индивидуальные. Но они могут работать только исключительно с моторами одного типа/мощности. Специализированные тоже имеют довольно ограниченный диапазон подключаемого оборудования. Универсальные, с этой точки зрения, хороши, но стоит они значительно дороже (сложнее схема и больше компонентов).

Выбирать надо под конкретное устройство

Но, все-таки, самые дорогие — интеллектуальные. Многие из них управляться могут при помощи сенсорной панели, а не набора регуляторов. Кроме того, большинство моделей имеет пульт дистанционного управления. Это удобно, так как частотный регулятор может быть установлен далеко. Обычно их ставят в шкафах или где-то на вводе. При наличии пульта ДУ можно регулировать работу, находясь возле двигателя и не бегая к шкафу.

Виды преобразователей частоты

Существует несколько типов частотников, которые на данный момент являются самыми распространенными для производства и использования:

Электромашинные (электроиндукционные) преобразователи: используются в тех случаях, когда невозможно или нецелесообразно применение электронных ПЧ. Конструктивно такие устройства являются асинхронными двигателями с фазным ротором, которые работают в режиме генератора-преобразователя.

Данные устройства являются преобразователями со скалярным управлением. На выходе из данного аппарата создается напряжение заданной амплитуды и частоты для поддержания определенного магнитного потока в обмотках статора. Они применяются в тех случаях, когда не требуется поддерживать скорость вращения ротора в зависимости от нагрузки (насосы, вентиляторы и прочее оборудование).

Электронные преобразователи: широко применяется в любых условиях работы для различного оборудования. Такие устройства являются векторными, они автоматически вычисляют взаимодействие магнитных полей статора и ротора и обеспечивают постоянное значение частоты вращения ротора вне зависимости от нагрузки.

  1. Циклоконверторы;
  2. Циклоинверторы;
  3. ПЧ с промежуточным звеном постоянного тока:
  • Частотный преобразователь источника тока;
  • Частотный преобразователь источника напряжения (с амплитудно- или широтно- импульсной модуляцией).

По сфере применения оборудование может быть:

  • для оборудования мощностью до 315 кВт;
  • векторные преобразователи для мощности до 500 кВт;
  • взрывозащищённые устройства для применения во взрывоопасных и запыленных условиях;
  • частотные преобразователи, монтируемые на электродвигатели;

Каждый тип частотного преобразователя имеет определенные преимущества и недостатки и применим для различного оборудования и нагрузок, а также условий работы.

Управление частотным преобразователем может быть ручным или внешним. Ручное управление осуществляется с пульта управления ПЧ, которым можно отрегулировать частоту вращения или остановить работу. Внешнее управление выполняется при помощи автоматических систем управления (АСУТП), которые могут контролировать все параметры устройства и позволяют переключать схему или режим работы (через ПЧ или байпас). Также внешнее управление позволяет программировать работу преобразователя в зависимости от условий работы, нагрузки, времени, что позволяет работать в автоматическом режиме.

Как подключить частотный преобразователь

Для подключения частотного преобразователя к оборудованию, прежде всего необходимо убедиться в том, что характеристики такого прибора подходят для работы с конкретным электродвигателем

Также важно, чтобы напряжение питающей сети позволяло использовать данный частотный преобразователь

При установке и подключении ЧП необходимо, чтобы условия эксплуатации соответствовали классу защищённости от влаги и пыли, а также были выдержаны все расстояния от движущихся частей машин и механизмов, от людских проходов и электрооборудования и аппаратуры.

Схема подключения ПЧ

Частотные преобразователи бывают как для трехфазных сетей, так и для однофазных. При этом к однофазной сети также можно подключать и трехфазный частотный преобразователь по схеме «треугольник», который дополнительно оснащен специальным конденсаторным блоком (при этом значительно падает мощность и понижается КПД устройства). Подключение же трехфазного преобразователя в соответствующей сети производится по схеме «звезда».

Управление частотным преобразователем может осуществляться с использованием контакторов, встроенных в различные релейные схемы, микропроцессорных контроллеров и компьютерного оборудования, а также вручную. Поэтому при подключении автоматизированных систем требуется участие специалистов по наладке такого оборудования.

Принцип подключения частотных преобразователей в целом одинаковый, но может несколько отличаться для разных моделей. Поэтому правильным решением будет перед подключением изучить инструкцию, сопоставить характеристики устройств и убедиться в том, что устройство подключается по схеме, предложенной производителем.

Для трехфазного электродвигателя

Для трехфазного электродвигателя принцип подключения следующий: к клеммным колодкам на выходе трехфазного частотного преобразователя подключаются фазные проводники к каждому выводу, а на вход подключаются фазы питающего напряжения. В данном случае всегда реализуется схема подключения «звезда» в двигателе. При подключении трехфазного двигателя через частотный преобразователь к однофазной сети применяют схему «треугольник».

Для однофазного электродвигателя

Для однофазного электродвигателя необходимо подключить фазный и нулевой проводник к преобразователю частоты, а обмотки двигателя подключаются к соответствующим клеммам на выходе частотного преобразователя. Например, обмотка L1 будет подключаться к клемме А преобразователя, обмотка L2 к клемме B, а общий провод к клемме C. Если применяется конденсаторный двигатель, то от частотного преобразователя фаза подключается к двигателю, а конденсатор обеспечивает сдвиг фаз.

Во всех случаях, при подключении частотных преобразователей и электродвигателей, всегда следует применять устройства защиты: автоматические выключатели и УЗО, рассчитанные на высокие пусковые токи, а также обязательно подключать заземляющий проводник к корпусам устройств

Также важно обратить внимание на сечение проводников электрокабеля, которым будет производится подключение – сечение должно соответствовать параметрам подключаемого частотного преобразователя и нагрузки

Watch this video on YouTube

Что такое частотный преобразователь, основные виды и какой принцип работы

Как подключить 3 фазный электродвигатель к сети 220 вольт через конденсатор

В чём отличия схем подключения обмоток электродвигателя звездой и треугольником

Схема работы устройства плавного пуска, его назначение и конструкция

Устройство, виды и принцип действия асинхронных электродвигателей

Как подключить однофазный электродвигатель — схема с конденсатором

Понравилась статья? Поделить с друзьями:
  • Бронхолитин сироп от кашля инструкция по применению взрослым цена аналоги
  • Бифидумбактерин цена в новосибирске инструкция по применению цена
  • Мануал ленд крузер прадо 150
  • Grand cherokee wk2 руководство по ремонту
  • Нутризон энерджи инструкция по применению цена