Электронный блок либо интегральная схема исполняющая машинные инструкции обработку

Процессор

Центра́льный проце́ссор (ЦП; также

центральное

процессорное

устройство

ЦПУ;

англ. central

processing unit,

CPU,

дословно —

центральное

обрабатывающее

устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код

программ), главная часть

аппаратного

обеспечения

компьютера

или

программируемого

логического

контроллера.

Иногда

называют

микропроцессором

или

просто

процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения

сложных компьютерных программ. Intel Core i7 2600K Socket LGA1155, вид сверху

Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Intel Core i7 2600K Socket LGA1155, вид снизу

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса,

используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития

полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Купили компьютер, что с ним делать.

Что такое компьютер

Компьютер – устройство или система, способное выполнять заданную, чётко определённую изменяемую последовательность операций. Это чаще всего операции численных расчётов и манипулирования данными, однако, сюда относятся и операции ввода-вывода. Описание последовательности операций называется программой. Согласитесь с одной стороны понятное, с другой — не очень ясное определение слова компьютер. Давайте разберемся, что это и как этим пользоваться.

Основные устройства компьютера, которые предстают перед глазами пользователя после покупки:

Монитор

1. Монитор (устройство, предназначенный для вывода графической, текстовой или звуковой информации на экран), это то устройство на котором Вы будете видеть изображение.

Системный блок

2. Системный блок (физически представляет основу, которая наполнена аппаратным обеспечением для создания компьютера), это сбор комплектующих, которые соединены между собой и обеспечивают работоспособность системного блока и характеризуют его производительность.
 Из чего состоит системный блок

Системный блок состоит из:
 Материнская плата

  • Материнская плата (сложная многослойная печатная плата, являющаяся основой построения вычислительной системы (компьютера)), это одна из основных деталей на которую устанавливаются основные комплектующие ПК. ( Особенности выбора материнской платы )

Процессор и кулер

  • Процессор и кулер (электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.). Это сердце компьютера, отвечающее за работоспособность, скорость обработки информации и другие процессы компьютера. Кулер, устанавливаемый на процессор служит для его охлаждения, поскольку при нагрузках процессор достигает температур до критических 70-80 градусов, поэтому основной задачей кулера является удержание температуры в рабочем диапазоне.

Оперативная память ОЗУ

  • Оперативная память ОЗУ — энергозависимая часть системы компьютерной памяти, в которой во время работы компьютера хранится выполняемый машинный код (программы), а также входные, выходные и промежуточные данные, обрабатываемые процессором и называется оперативной памятью.

Жесткий диск компьютера

  • Жесткий диск НЖМД — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.
  • Видеокарта — устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой.

Видеокарта в компьютере

  • Оптический привод — устройство, имеющее механическую составляющую, управляемую электронной схемой и предназначенное для считывания и (в большинстве современных моделей) записи информации с оптических носителей информации в виде пластикового диска с отверстием в центре (компакт-диск, DVD и т. д.); процесс считывания/записи информации с диска осуществляется при помощи лазера.

Привод CD DVD.

  • Корпус и блок питания — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электрической энергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений.

Корпус и блок питания компьютера

3. Клавиатура — комплект расположенных в определенном порядке клавиш для управления каким-либо устройством или для ввода данных. Как правило, кнопки на клавиатуре, нажимаются пальцами рук.
Клавиатура для компьютера

4. Мышь — механический манипулятор, преобразующий движение в управляющий сигнал. В частности, сигнал может быть использован для позиционирования курсора или прокрутки страниц.

Мышь для компьютера

5. Компьютерные колонки – акустика, как правило, активная (с установленным внутри активным усилителем), подключаемая к компьютеру для воспроизведения звучания.

 Колонки для компьютера

В современном мире достаточно сложно представить себе жизнь без компьютера, либо других современных гаджетов. Почему компьютеры на сегодняшний день до сих пор популярны в Беларуси? Не один год, ноутбуки, а так же планшеты пытались вытеснить стационарные компьютеры с рынка, так или иначе, это им не удалось.  Одной из причин является стоимость. На сегодняшний день компьютер, относительно цены на схожие по параметрам ноутбуки сильно выигрывает в ценовой гонке. Судите сами, можно купить, к примеру — популярные конфигурации среднего ценового диапазона ноутбуков (процессор Intel Core i3, оперативная память 4GB, жесткий диск 500Gb и дискретная видеокарта GT840 2048MB.) по цене начиная от  9 500 000 http://pcmarket.by/catalog/noutbuki:

— Ноутбук Acer Aspire E5-572G-36YA (NX.MQ0EU.015) (http://pcmarket.by/products/acer-aspire-e5-572g-36ya)

 — Ноутбук Lenovo Z50-70 (59436363) (http://pcmarket.by/catalog/noutbuki-lenovo)

При этом если сделать выборку по стационарным компьютерам с параметрами процессор Intel Core i3, оперативная память 4GB, жесткий диск 1000Gb и дискретная видеокарта GT740 2048MB — http://pcmarket.by/products/Intel-Core-i3-4130-12003  мы получаем сумму в 7500 000, что на 2000 000 меньше стоимости ноутбука. Согласитесь 2 миллиона это существенная разница, при этом компьютер будет работать куда шустрее, чем ноутбук, жесткий диск при этом будет в 2 раза большего объема, процессор будет мощнее, видеокарта так же будет мощнее. Поэтому цена на компьютеры как раз и делает покупку последнее более привлекательной.

Второй важной причиной купить настольный компьютер, предпочитая его ноутбуку, является возможность модернизации и возможность замены отдельных комплектующих. Тут ситуация разворачивается следующим образом, к примеру: Вы купили компьютер, вышла новая игра, установленный изначально видеоадаптер не справляется с ней. Вы всегда, ну почти всегда, можете купить новую видеокарту, вставить ее в компьютер и наслаждаться новым игровым контентом. При аналогичной ситуации с ноутбуком уже сделать ничего нельзя, так как видеокарта впаяна в саму материнскую плату и официально замене не подлежит. Есть конечно «народные умельцы», которые способны перепаять видеокарту на более мощную, но они не дадут гарантии о работоспособности техники, а так же, как показывает практика зачастую такие видеокарты отказываются работать уже через неделю, две. Это же и касается покупателей у которых есть маленькие дети, представим ситуацию, ребенок разлил жидкость на ноутбук, в ноутбуке, как правило выходит из строя залитая материнская плата на которой завязаны все остальные детали, такая проблема как правило решается полной ее заменой, а это уже близко к стоимости нового ноутбука.  Тоже самое и с экраном, достаточно оставить, что то на корпусе открытого ноутбука, ребенок закроет крышку и все, матрица в дребезги, а полная замена экрана в зависимости от модели, может варьироваться от 2200000 до 3000000 рублей, что опять же может сильно ударить по карману.  Все эти неожиданности в настольном ПК, как правило решаются минимальными вложениями, даже вылитый сок может повредить одну или даже несколько деталей компьютера, при этом достаточно только заменить эти детали и все работает как и было.

Как пользоваться компьютером

В итоге купить компьютер становится не только выгодно, но и неприятности с дефектами, вызванными внешними факторами решаются куда дешевле, чем в ноутбуках, а так же немаловажным фактором остается всё-таки производительность и возможность модернизации настольных компьютеров.

Теперь непосредственно о том, когда покупка компьютера осуществлена. Независимо от конфигурации выбранного товара, что с ним необходимо сделать. Вот компьютер у Вас дома, начинаем с подключения. Любой настольный компьютер, как правило, требует наличие рядом 3-х и более розеток с напряжением в 220 вольт.

Сначала подключаем силовой провод к системному блоку (рис 1.) 
РИСУНОК 1
и вставляем в розетку. Далее вставляем силовой провод в монитор (рис. 2) и вставляем в розетку номер 2.
РИСУНОК 2
Далее необходимо соединить монитор с компьютером, вариаций соединения, как правило, предостаточно, это может быть VGA-VGA, VGA-VGA через переходник DVI, DVI-DVI, HDMI-DHMI и т.д. Но основное соединение, которое используется в компьютерах, купленных в Беларуси на сегодняшний день это VGA-VGA (рис. 3). 

РИСУНОК 3
Тут стоит отметить, что при покупке компьютера, Вам не стоит сильно вникать в тонкости соединения системного блока с монитором, даже если он у Вас совсем старый ЭЛТ, способ подключения с новым компьютером проблемой не станет, так как производители видеокарт в комплекте поставки предусматривают все вариации соединения, как со старыми мониторами, так и с новыми.
Далее необходимо подключить клавиатуру, мышь и колонки. Вариаций соединения клавиатуры и мыши только две. Разъем PS-2 (для мыши зеленого цвета, для клавиатуры фиолетового рис. 4) или USB соединение (рис. 5). 

РИСУНОК 4, 5, 6, 7
Первое что мы делаем, это определяем, какие разъемы в купленной вами мыши и клавиатуре. Если это разъемы PS-2, подключаем каждое гнездо в свое цветовое решение на задней части системного блока (рис. 6), если это соединение USB соответственно  в любой USB разъем.  Обращаем Ваше внимание, что штекеры на клавиатуре и мыши могут комбинироваться, например мышь может быть USB, а клавиатура PS-2, в этом случае подключаем каждое устройство в свой разъем. Колонки, как правило, подключаются в 3-ю свободную розетку с напряжением в 220 вольт – это есть их питание, а штекер mini jack зеленого цвета (рис. 7) подключается к разъему соответствующего цвета в задней части системного блока. Есть еще одна вариации подключения акустической системы к настольному компьютеру, это подключение через USB, такая акустика не имеет провода питания, это самое питание она получает через разъем USB, такую акустику достаточно просто вставить в разъем и она начнет свою работу.

Разъемы в ноутбуке

После того как выполнены все 3 пункта описанные выше, можно приступать к включению компьютера. Обращаем Ваше внимание, что на некоторых блоках питания установленных в компьютер, присутствует кнопка включения питания (рис. 8), 

РИСУНОК 8

Вам необходимо посмотреть на задней части компьютеры, возле силового разъема наличие такой кнопки, если она есть, перевести ее в режим работы, после чего нажатием кнопки включения на лицевой панели корпуса включить компьютер, если ее нет, достаточно просто нажать на кнопку включения компьютера и все должно заработать.

Внимание, компьютеры сконструированы так, что бы, Вы не могли подключить устройства в разъемы не предназначенные для них. Поэтому вероятность ошибки при подключении настольного компьютера фактически нулевая. Однако, все же, пусть лучше подключение осуществляет мастер, который доставляет технику к Вам домой.  В нашей компании работают только квалифицированные курьеры, которые обладают всеми техническими знаниями для подключения и настройки компьютера. Процедура эта при покупке в нашем магазине совершенно бесплатная, поэтому если у Вас нет желания самостоятельно подключать технику, это сделает наш специалист.

Как пользоваться компьютером

Помимо соединения стандартного набора устройств, к компьютеру так же можно подключать и периферийные устройства. Самые популярные на сегодняшний день это: принтеры либо МФУ и сетевая карта Wi-Fi.  
 

Принтеры и МФУ подключаются очень просто, в большинстве случаев имеют силовой кабель и кабель соединения с компьютером.  Силовой как Вы поняли, подключается одной стороной к принтеру, вторая сторона провода — это вилка розетки, которая подключается в сеть с напряжением в 220 вольт. Интерфейс соединения с компьютером принтера либо МФУ, как правило, USB.

Принтер МФУ
Сетевые карты Wi-Fi в Беларуси представлены 2-мя типами интерфейс. USB либо PCI, основным отличием в подключении является то, что USB как правило это внешние сетевые карты Wi-Fi, напоминающие обычную флешь карту, а PCI внутренние, которые устанавливаются путем монтажа в соответствующий разъем материнской платы.  Как правило, внутренние сетевые карты имеют различные вариации работы, могут быть как одно антенными, так и двух, трех антенные, что дает возможность использовать беспроводной интернет с менее мощным сигналом.
Сетевые карты Wi-Fi

Операционная система
Вот мы немного и разобрались с подключением и установкой компьютера. Что же дальше. После включения мы видим загрузку операционной системы (Операционная система — комплекс взаимосвязанных программ, предназначенных для управления ресурсами вычислительного устройства и организации взаимодействия с пользователем.).  На сегодняшний день в Беларуси устанавливается на компьютеры, как правило, версии Windows 7 и Windiws 8.1. ( Что такое BIOS БИОС в Windows ) . Но продаются и iMac от компании Apple. Там другая операционная система. Для тех, кто не знает, это та компания, которая производит iPhone.
Операционная система в компьютерах и ноутбукахЕсли Вы новичок в работе с ОС, мы рекомендуем почитать соответствующую литературу по работе с той или иной операционной системой. А так же, в каждой операционной системе, установленной на компьютер, присутствует справочник по работе в ней, вызывается, как правило, клавишей F1, там Вы так же можете читать ту или иную полезную информацию. Вообще сама операционная система Windows, после включения ПК предстаёт перед глазами пользователя в виде рабочего стола. Рабочий стол отображает папки, ярлыки, меню пуск, панель управления. Сама операционная система состоит из окон. Окно – это область, очерченная на экране, которая отображает информацию связанной с этим окном программой. Окна операционно системы могут быть нескольких типов: диалоговые, окна папок, рабочие, справочной системы и т.д.  Для того что бы работать с операционной системой надо понять вообще суть работы этой системы, поэтому все же стоит изучить досконально всю информацию. Что касательно использования ОС в компьютерах в домашних условиях, необходимо отметить, что корректная работа ОС на компьютере, как правило, зависит от грамотности пользователя.  Нельзя просто так взять, купить и начать использовать компьютер, так как операционная система достаточно хрупка, постоянно подвергается вирусным атакам, некорректная работа может привести к выходу операционной системы из строя в считанные минуты.  Основные проблемы, с которыми сталкиваются новички при покупке компьютера с работой в ОС:
 

— Установка игр и программ на системный диск. Вся информация, которая присутствует на компьютере, находится на жестком диске. Буквенное обозначение разделов жесткого диска в системе выглядит так: «С», «D» и т.д. Количество разделов и объем памяти в жестком диске, задаются при установке операционной системе в зависимости от пожелания пользователя. Чаще всего жесткий диск разбивается на 2 раздела: диск C (системный – куда устанавливается ОС и программы), и диск «D» (для хранения и записи информации). Так вот диск «C» — имеет ограниченный объем, и установка игр и дополнительных программ на него не желательна, поскольку память диска C очень быстро заполняется и компьютер начинает работать не корректно. Поэтому. После покупки, устанавливайте игры и программы на диск «D».

— Вредоносные программы – вирусы. Компьютер постоянно подвергается вирусным атакам, особенно при использовании компьютера в сети интернет.  Избежать попадания таких программ на компьютер практически не избежать, сдержать их можно только качественными антивирусными программами. Однако установка лицензионного антивируса стоит приличных денег и все равно не дает 100% гарантии от попадания вредоносных программ на ПК. Из рекомендаций можно отметить следующие: постоянное сканирование и удаление вредоносных программ антивирусом, регулярная установка обновлений Вашего антивируса, ну и желательна покупка лицензионной программы.

— Установка обновлений на компьютер. Операционная система постоянно скачивает из сети интернет свежие обновления, хоть этот процесс Вы и не можете пощупать, но он постоянно происходит. После скачивания всех необходимых файлов, операционная система может просить Вас, с помощью всплывающего информационного окна, о том, что требуется установка обновлений, либо может принудительно при выключении компьютера начать устанавливать их самостоятельно.  В этом случае перед нами предстает окно выключения ПК с процессом установки обновлений. На этом этапе нельзя ни в коем случае выключать компьютер. Многие игнорируют эту рекомендацию, после выключения питания в момент установки обновлений, операционная система больше не будет загружаться.  В этом случае поможет либо восстановление ОС либо полная ее переустановка.

— Установка взломанных игр. Все читали в файлах установки игры фразу «перед установкой игры отключить антивирус» — это не с проста. Поскольку купленная игра требует ее взлома, чтобы все желающие могли получить доступ к той или иной программе, антивирус может при установке файл «кряк» (Кряки, представляющие собой патч, зачастую, заменяют лишь байты по определённым адресам, содержащим команды условного перехода, что позволяет избавиться от нежелательных действий со стороны программы, например, запроса регистрации или активации, наличия оригинального диска, переключения в режим ограниченной функциональности и т.д) Также, зачастую, достаточно лишь изменить одну или несколько переменных, отвечающих за информацию о регистрации/активации. Как правило, кряки создаются для того, чтобы все желающие могли получить доступ к той или иной программе.) определить его как вредоносную программу и удалить, вследствие чего взломанная игра не будет запускаться. Хотя отключение антивируса и не всегда связано с удалением «кряка». Антивирус слишком сильно контролирует систему, потому в ряде случаев и при установке легального ПО, например, видеодрайверов, а также игр есть рекомендация отключить антивирус — потому что он может помешать правильной установке.
 

Работа с системным блоком.
 Работа с системным блоком

Системный блок – это сердце компьютера, в котором расположены основные детали. Системный блок с лицевой стороны, как правило, содержит 2 клавиши (включения/выключения и кнопки перезагрузки), а так же 2 или больше разъема USB для подключения различных устройств, выход для наушников и микрофона. По бокам или с одного любого бока чаще всего находятся воздуховоды (как и в ноутбуке), отвечающие за циркуляцию воздуха внутри системного блока. На задней части системного блока в основном располагаются порты, для подключения основных устройств, таких как клавиатура, мышь, акустика, монитор. Сам по себе системный блок требует к себе внимания только со стороны очистки деталей от скопившейся пыли. Чистку требуется проводить постоянно.  Системный блок работает по принципу пылесоса, он постоянно втягивает в себя большое количество воздуха, и соответственно пыли, которая в свою очередь скапливается на кулерах и на остальных деталях. Так как пыль является токопроводящим материалом, в большом количестве находясь на контактных платах, она может вызывать короткое замыкание контактов, а так же попадая на кулер, затрудняет вращение, что вызывает недостаточное охлаждение устройства и может привести системный блок к перегреву. Чистку системного блока выполнить в домашних условиях очень просто, для этого нам понадобится обычный пылесос, ватные палочки, мягкая кисточка, ну и может быть крестовая отвертка.
 Чистка системного блока

  1.  Шаг 1. Снимаем боковую крышку(и) системного блока, снять ее достаточно просто, в зависимости от корпуса она либо может быть прикручена болтами либо открывается механическими защелками.
  2.  Шаг 2. Пылесосом убираем основную пыль, которая скопилась целыми кусками, внимание, если Вы наводите пылесос на кулера, требуется сам вращательный элемент придерживать рукой, что бы он не вращался.
  3.  Шаг 3. Ватной палочкой более тщательно убираем скопившуюся пыль с кулеров, не стоит до блеска пытаться очистить кулер, достаточно удалить максимально большее доступное количество пыли.
  4.  Шаг 4. Мягкой кисточкой проходимся по основным платам, просто аккуратно сметая слой пыли.
  5.  Шаг 5. Устанавливаем крышку корпуса на место. Все. Готово, Можно дальше пользоваться компьютером.

Монитор является устройством, которое выводит для Вас визуальную информацию. Что только не встретишь на экране: пыль, отпечатки пальцев, остатки еды, жирные пятна и т.д.  Необходимо очищать область экрана на мониторе не реже одного раза в неделю, поскольку пыль скопившаяся на экране вредит Вашему здоровью, вы же дышите, а в пыли присутствуют вредные вещества и микроорганизмы. Очищать экран желательно специальными средствами, салфетками, спреями и т.д.  Но если нет возможности купить эти средства можно обойтись теплой водой и безворсовой салфеткой. Внимание, монитор рекомендуется обесточить за 2 часа до начала чистки. В процессе эксплуатации не закрывайте специальные вентиляционные отверстия монитора, что бы обеспечить постоянную циркуляцию воздуха. Чаще всего, именно на монитор устанавливают Web — камеру.
 Мониторы

Мышь. Классическая мышь состоит, как правило, из двух клавиш (левая и правая) и ролик прокрутки (скролл). На экране перед Вами отображается стрелка (курсор) и при перемещении мышь стрелка аналогично передвигается по экрану монитора. Левая кнопка мыши предназначена для выделения, задействования или указывания на элементы, с которыми необходимо выполнить какие-то действия. Правая кнопка служит для вывода на экран списка возможных действий, которые можно произвести с выбранным объектом. Колесико мышки – используется в основном для прокрутки страниц или списков элементов, которые в силу своих размеров не могут отображаться на экране монитора целиком.  Избегайте попадания воды на устройство, так как любая мышь при повреждении влагой может моментально выйти из строя. Использовать современные мыши можно практически на любых поверхностях кроме зеркальных. Использование специального коврика для мыши продлит ее срок службы.

Компьютерная мышь

Клавиатура. Клавиатуры делятся на стандартные и мультимедийные. Основным отличием мультимедийный клавиатур является наличие клавиш быстрого доступа к тем или иным функциям управления программами.  Стандартная клавиатура ПК имеет более 100 клавиш, разделенных на несколько функциональных блоков:

Компьютерная клавиатура

— алфавитно-цифровую

— дополнительную цифровую

— функциональные

— служебные

— управления курсором

Клавиатура, как и мышь подвержена максимальной нагрузке при эксплуатации компьютера. Поэтому требует к себе бережного и внимательного отношения.  Не стоит превращать компьютерный стол в обеденный, так как кусочки пищи могут попадать внутрь клавиатуры, окислять контакты и препятствовать нажатию клавиш. Отсоединять и присоединять клавиатуру рекомендуется только при выключенном питании системного блока – это продлит ее работоспособность, рекомендуем периодически протирать каждую клавишу спиртосодержащими жидкостями, ни в коем случае не допускать попадания жидкостей внутрь устройства.

Основные горячие клавиши Windows:

Общего назначения.

Ctrl + Esc — Открыть меню «Пуск» (Start)

Ctrl + Shift + Esc — Вызов «Диспетчера задач»

Win + E — Запуск «Проводника» (Explore)

Win + R — Отображение диалога «Запуск программы» (Run), аналог «Пуск» — «Выполнить»

Win + D — Свернуть все окна или вернуться в исходное состояние (переключатель)

Win + L — Блокировка рабочей станции

Win + F1 — Вызов справки Windows

Win + Pause — Вызов окна «Свойства системы» (System Properties)

Win + F — Открыть окно поиска файлов

Win + Сtrl + F — Открыть окно поиска компьютеров

Printscreen — Сделать скриншот всего экрана

Alt + Printscreen — Сделать скриншот текущего активного окна

Win + Tab — Выполняет переключение между кнопками на панели задач

F6/Tab — Перемещение между панелями. Например, между рабочим столом и панелью «Быстрый запуск»

Ctrl + A — Выделить всё (объекты, текст)

Ctrl + C — Копировать в буфер обмена (объекты, текст)

Ctrl + X — Вырезать в буфер обмена (объекты, текст)

Ctrl + V — Вставить из буфера обмена (объекты, текст)

Ctrl + N — Создать новый документ, проект или подобное действие. В Internet Explorer это приводит к открытию нового окна с копией содержимого текущего окна.

Ctrl + S — Сохранить текущий документ, проект и т.п.

Ctrl + O — Вызвать диалог выбора файла для открытия документа, проекта и т.п.

Ctrl + P — Печать

Ctrl + Z — Отменить последнее действие

Shift — Блокировка автозапуска CD-ROM (удерживать, пока привод читает только что вставленный диск)

Alt + Enter — Переход в полноэкранный режим и обратно (переключатель; например, в Windows Media Player или в окне командного интерпретатора).

Работа с текстом.

Ctrl + A — Выделить всё

Ctrl + C — Копировать

Ctrl + X — Вырезать

Ctrl + V — Вставить

Shift + Insert —

Ctrl + ←/Ctrl + → — Переход по словам в тексте. Работает не только в текстовых редакторах. Например, очень удобно использовать в адресной строке браузера

Shift + ←/Shift + →/Shift + ↑/Shift + ↓ — Выделение текста

Ctrl + Shift + ←/Ctrl + Shift + → — Выделение текста по словам

Home/End/Ctrl + Home/Ctrl + End — Перемещение в начало-конец строки текста

Ctrl + Home/Ctrl + End — Перемещение в начало-конец документа

Работа с окнами.

Ctrl + A — Выделить всё

Ctrl + C — Копировать

Ctrl + X — Вырезать

Ctrl + V — Вставить

Shift + Insert —

Ctrl + ←/Ctrl + → — Переход по словам в тексте. Работает не только в текстовых редакторах. Например, очень удобно использовать в адресной строке браузера

Shift + ←/Shift + →/Shift + ↑/Shift + ↓ — Выделение текста

Ctrl + Shift + ←/Ctrl + Shift + → — Выделение текста по словам

Home/End/Ctrl + Home/Ctrl + End — Перемещение в начало-конец строки текста

Ctrl + Home/Ctrl + End — Перемещение в начало-конец  документа.

Итог.
Компьютер хоть и сложное устройство, но на сегодняшний день очень востребованное. Ведь практически ни одна задача в мире сегодня не происходит без участия и контроля компьютера. Все больше и больше жителей Беларуси смотрят в сторону покупки именно настольного ПК, поскольку это не только выгодно, но и востребовано современными нормами и требованиями жизни. Уже сложно представить человека, у которого нет компьютера или ноутбука, а с недавнего времени и планшета. Постоянный доступ к интернету, выход в социальные сети, игровой и бизнес формат, все это современные требования и желания каждого человека. Покупка компьютера дело само по себе серьёзное и требует внимания и тщательного выбора. С выбором и покупкой компьютера мы всегда готовы Вам помочь. Специально для наших покупателей, компьютеры разделены на несколько категорий. Мы отобрали самые частые запросы пользователей и постарались четко разграничить компьютеры по функциональному назначению. В нашем каталоге можно купить:

— Компьютер для офиса (этот вид компьютеров построен, как правило, на платформе недорогих процессоров со встроенной видеокартой и основное функциональное назначение этой группы компьютеров, является работа с документами, текстовыми файлами, выходом в интернет и т.д.) Данные конфигурации не подходят для игр и сложных программ, поскольку имеют встроенный (слабый) видеоадаптер.

— Компьютер для дома (эта группа компьютеров, созданы специально для домашних задач. Основные характеристики — это среднего уровня процессоры в сочетании с дискретной видеокартой). На таком компьютере доступны практически любые задачи, учебные, мультимедийные, работа с документами, такие компьютеры, как правило, имею большой объём жесткого диска для хранения информации (фильмы, фотографии), единственное что недоступно для компьютеров данной категории, это запуск серьезных профессиональных программ и очень требовательных игр.

— Компьютер для игр (группа игровых компьютеров в нашем интернет магазине очень широкая, основной отличительной чертой данных конфигураций является использование премиум процессоров с максимальными параметрами, а так же премиальных дискретных видеокарт). Компьютеры игровые способны удовлетворить требования даже самых привередливых покупателей, поскольку вилка невероятно огромная, потенциальному покупателю следует сразу обратить внимание на требования нескольких игр, в которые он планирует играть, дабы подобрать соответствующие комплектующие.

— Компьютер для Wot (отличаются особым подбором свойств необходимых для использования именно  по требованиям разработчика игры). В этой категории техники нашей компании постарались учесть все требования к игре и разработать конфигурации, предназначенные именно для игры World of Tanks, что бы использовать полностью потенциал компьютера не зависимо от настроек игры. Компьютеры этой категории походят так же для игр другого формата, а так же для домашнего использования и профессиональной деятельности.

Специально для наших клиентов мы предлагаем купить компьютер в кредит, рассрочку, не выходя из дома, оформление возможно по телефону, а так же наша компания готова совершенно бесплатно доставить компьютер не только в Минск, Гродно, Витебск, Могилев, Гомель, Брест, но и в любой населенный пункт нашей огромной и прекрасной страны.

Запрос «ЦП» перенаправляется сюда; см. также другие значения.

Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид снизу

Intel Celeron 1100 Socket 370 в корпусе FC-PGA2, вид сверху

Центра́льный проце́ссор (ЦП; также центральное процессорное устройство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура.

Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

Содержание

  • 1 История
    • 1.1 Перспективы
  • 2 Архитектура фон Неймана
    • 2.1 Конвейерная архитектура
    • 2.2 Суперскалярная архитектура
    • 2.3 CISC-процессоры
    • 2.4 RISC-процессоры
    • 2.5 MISC-процессоры
    • 2.6 VLIW-процессоры
    • 2.7 Многоядерные процессоры
    • 2.8 Кэширование
  • 3 Гарвардская архитектура
  • 4 Параллельная архитектура
    • 4.1 Цифровые сигнальные процессоры
  • 5 Процесс изготовления
    • 5.1 Энергопотребление процессоров
    • 5.2 Тепловыделение процессоров и отвод тепла
    • 5.3 Измерение и отображение температуры микропроцессора
  • 6 Производители
    • 6.1 СССР/Россия
    • 6.2 Китай
    • 6.3 Япония
  • 7 Определение модели
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

История

История развития производства процессоров полностью соответствует истории развития технологии производства прочих электронных компонентов и схем.

Первым этапом, затронувшим период с 1940-х по конец 1950-х годов, было создание процессоров с использованием электромеханических реле, ферритовых сердечников (устройств памяти) и вакуумных ламп. Они устанавливались в специальные разъёмы на модулях, собранных в стойки. Большое количество таких стоек, соединённых проводниками, в сумме представляли процессор. Отличительной особенностью была низкая надёжность, низкое быстродействие и большое тепловыделение.

Вторым этапом, с середины 1950-х до середины 1960-х, стало внедрение транзисторов. Транзисторы монтировались уже на близкие к современным по виду платам, устанавливаемым в стойки. Как и ранее, в среднем процессор состоял из нескольких таких стоек. Возросло быстродействие, повысилась надёжность, уменьшилось энергопотребление.

Третьим этапом, наступившим в середине 1960-х годов, стало использование микросхем. Первоначально использовались микросхемы низкой степени интеграции, содержащие простые транзисторные и резисторные сборки, затем по мере развития технологии стали использоваться микросхемы, реализующие отдельные элементы цифровой схемотехники (сначала элементарные ключи и логические элементы, затем более сложные элементы — элементарные регистры, счётчики, сумматоры), позднее появились микросхемы, содержащие функциональные блоки процессора — микропрограммное устройство, арифметическо-логическое устройство, регистры, устройства работы с шинами данных и команд.

Четвёртым этапом, в начале 1970-х годов, стало создание, благодаря прорыву в технологии создания БИС и СБИС (больших и сверхбольших интегральных схем, соответственно), микропроцессора — микросхемы, на кристалле которой физически были расположены все основные элементы и блоки процессора. Фирма Intel в 1971 году создала первый в мире 4-разрядный микропроцессор 4004, предназначенный для использования в микрокалькуляторах. Постепенно практически все процессоры стали выпускаться в формате микропроцессоров. Исключением долгое время оставались только малосерийные процессоры, аппаратно оптимизированные для решения специальных задач (например, суперкомпьютеры или процессоры для решения ряда военных задач), либо процессоры, к которым предъявлялись особые требования по надёжности, быстродействию или защите от электромагнитных импульсов и ионизирующей радиации. Постепенно, с удешевлением и распространением современных технологий, эти процессоры также начинают изготавливаться в формате микропроцессора.

Сейчас слова микропроцессор и процессор практически стали синонимами, но тогда это было не так, потому что обычные (большие) и микропроцессорные ЭВМ мирно сосуществовали ещё по крайней мере 10-15 лет, и только в начале 1980-х годов микропроцессоры вытеснили своих старших собратьев. Тем не менее, центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой и сверхбольшой степени интеграции.

Переход к микропроцессорам позволил потом создать персональные компьютеры, которые проникли почти в каждый дом.

Первым общедоступным микропроцессором был 4-разрядный Intel 4004, представленный 15 ноября 1971 года корпорацией Intel. Он содержал 2300 транзисторов, работал на тактовой частоте 92,6 кГц[1] и стоил 300 долл.

Далее его сменили 8-разрядный Intel 8080 и 16-разрядный 8086, заложившие основы архитектуры всех современных настольных процессоров. Из-за распространённости 8-разрядных модулей памяти был выпущен дешевый 8088, упрощенная версия 8086, с 8-разрядной шиной памяти.

Затем проследовала его модификация 80186.

В процессоре 80286 появился защищённый режим с 24-битной адресацией, позволявший использовать до 16 Мб памяти.

Процессор Intel 80386 появился в 1985 году и привнёс улучшенный защищённый режим, 32-битную адресацию, позволившую использовать до 4 Гб оперативной памяти и поддержку механизма виртуальной памяти. Эта линейка процессоров построена на регистровой вычислительной модели.

Параллельно развиваются микропроцессоры, взявшие за основу стековую вычислительную модель.

За годы существования микропроцессоров было разработано множество различных их архитектур. Многие из них (в дополненном и усовершенствованном виде) используются и поныне. Например Intel x86, развившаяся вначале в 32-битную IA-32, а позже в 64-битную x86-64 (которая у Intel называется EM64T). Процессоры архитектуры x86 вначале использовались только в персональных компьютерах компании IBM (IBM PC), но в настоящее время всё более активно используются во всех областях компьютерной индустрии, от суперкомпьютеров до встраиваемых решений. Также можно перечислить такие архитектуры как Alpha, POWER, SPARC, PA-RISC, MIPS (RISC-архитектуры) и IA-64 (EPIC-архитектура).

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпруживающую конструкцию — LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём — socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов.

Перспективы

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

  • Оптические компьютеры — в которых вместо электрических сигналов обработке подвергаются потоки света (фотоны, а не электроны).
  • Квантовые компьютеры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.
  • Молекулярные компьютеры — вычислительные системы, использующие вычислительные возможности молекул (преимущественно, органических). Молекулярными компьютерами используется идея вычислительных возможностей расположения атомов в пространстве.

Архитектура фон Неймана

Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки данных, изобретённого[источник не указан 507 дней] Джоном фон Нейманом.

Дж. фон Нейман придумал[источник не указан 507 дней] схему постройки компьютера в 1946 году.

Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти.

В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов.

Этапы цикла выполнения:

  1. Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса и отдаёт памяти команду чтения.
  2. Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных и сообщает о готовности.
  3. Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её.
  4. Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды.

Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства).

Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода, — тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды остановка или переключение в режим обработки прерывания.

Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы.

Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой.

Конвейерная архитектура

Конвейерная архитектура (pipelining) была введена в центральный процессор с целью повышения быстродействия. Обычно для выполнения каждой команды требуется осуществить некоторое количество однотипных операций, например: выборка команды из ОЗУ, дешифровка команды, адресация операнда в ОЗУ, выборка операнда из ОЗУ, выполнение команды, запись результата в ОЗУ. Каждую из этих операций сопоставляют одной ступени конвейера. Например, конвейер микропроцессора с архитектурой MIPS-I содержит четыре стадии:

  • получение и декодирование инструкции,
  • адресация и выборка операнда из ОЗУ,
  • выполнение арифметических операций,
  • сохранение результата операции.

После освобождения k-й ступени конвейера она сразу приступает к работе над следующей командой. Если предположить, что каждая ступень конвейера тратит единицу времени на свою работу, то выполнение команды на конвейере длиной в n ступеней займёт n единиц времени, однако в самом оптимистичном случае результат выполнения каждой следующей команды будет получаться через каждую единицу времени.

Действительно, при отсутствии конвейера выполнение команды займёт n единиц времени (так как для выполнения команды по-прежнему необходимо выполнять выборку, дешифровку и т. д.), и для исполнения m команд понадобится ncdot m единиц времени; при использовании конвейера (в самом оптимистичном случае) для выполнения m команд понадобится всего лишь n+m единиц времени.

Факторы, снижающие эффективность конвейера:

  1. Простой конвейера, когда некоторые ступени не используются (например, адресация и выборка операнда из ОЗУ не нужны, если команда работает с регистрами).
  2. Ожидание: если следующая команда использует результат предыдущей, то последняя не может начать выполняться до выполнения первой (это преодолевается при использовании внеочередного выполнения команд — out-of-order execution).
  3. Очистка конвейера при попадании в него команды перехода (эту проблему удаётся сгладить, используя предсказание переходов).

Некоторые современные процессоры имеют более 30 ступеней в конвейере, что повышает производительность процессора, но, однако, приводит к увеличению длительности простоя (например, в случае ошибки в предсказании условного перехода). Не существует единого мнения по поводу оптимальной длины конвейера: различные программы могут иметь существенно различные требования.

Суперскалярная архитектура

Способность выполнения нескольких машинных инструкций за один такт процессора путем увеличения числа исполнительных устройств. Появление этой технологии привело к существенному увеличению производительности, в то же время существует определенный предел роста числа исполнительных устройств, при превышении которого производительность практически перестает расти, а исполнительные устройства простаивают. Частичным решением этой проблемы являются, например, технология Hyper-threading.

CISC-процессоры

Complex instruction set computer — вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC являются микропроцессоры семейства x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд: в начале процесса исполнения сложные команды разбиваются на более простые микрооперации (МОП), исполняемые RISC-ядром).

RISC-процессоры

Reduced instruction set computer — вычисления с упрощённым набором команд (в литературе слово reduced нередко ошибочно переводят как «сокращённый»). Архитектура процессоров, построенная на основе упрощённого набора команд, характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson).

Упрощение набора команд призвано сократить конвейер, что позволяет избежать задержек на операциях условных и безусловных переходов. Однородный набор регистров упрощает работу компилятора при оптимизации исполняемого программного кода. Кроме того, RISC-процессоры отличаются меньшим энергопотреблением и тепловыделением.

Среди первых реализаций этой архитектуры были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры.

MISC-процессоры

Minimum instruction set computer — вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд).

VLIW-процессоры

Very long instruction word — сверхдлинное командное слово. Архитектура процессоров с явно выраженным параллелизмом вычислений, заложенным в систему команд процессора. Являются основой для архитектуры EPIC. Ключевым отличием от суперскалярных CISC-процессоров является то, что для них загрузкой исполнительных устройств занимается часть процессора (планировщик), на что отводится достаточно малое время, в то время как загрузкой вычислительных устройств для VLIW-процессора занимается компилятор, на что отводится существенно больше времени (качество загрузки и, соответственно, производительность теоретически должны быть выше). Примером VLIW-процессора является Intel Itanium.

Многоядерные процессоры

Ambox outdated serious.svg

Информация в этой статье или некоторых её разделах устарела.

Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах).

Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности.

Первым многоядерным микропроцессором стал POWER4 от IBM, появившийся в 2001 году и имевший два ядра.

В октябре 2004 года Sun Microsystems выпустила двухъядерный процессор UltraSPARC IV, который состоял из двух модифицированных ядер UltraSPARC III. В начале 2005 был создан двухъядерный UltraSPARC IV+.

14 ноября 2005 года Sun выпустила восьмиядерный UltraSPARC T1, каждое ядро которого выполняло 4 потока.

5 января 2006 года Intel представила первый двухъядерный процессор на одном кристале Core Duo, для мобильной платформы.

В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты.

В октябре 2007 года в продаже появились восьмиядерные UltraSPARC T2, каждое ядро выполняло 8 потоков.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверов AMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona.[2] 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom.[3] Эти процессоры реализуют новую микроархитектуру K8L (K10).

Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырёхъядерные процессоры которой представляют собой фактически склейку двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый «четырёхъядерник» фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач[источник не указан 1184 дня].

К 1-2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7, является её чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel X58 и трёхканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость.

Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объём кэша (по сравнению с первым поколением Phenom), процессоры стали изготавливаться по 45-нм техпроцессу (это, соответственно, позволило снизить тепловыделение и значительно повысить рабочие частоты). В целом, AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстаёт от Intel Core i7[источник не указан 1193 дня]. С выходом 6-ядерного процессора AMD Phenom II X6 Black Thuban 1090T ситуация немного изменилась в пользу AMD.

На данный момент[когда?] массово доступны процессоры с 2, 3, 4 и 6 ядрами, а также 2, 3 и 4-модульные процессоры AMD поколения Bulldozer. В серверном сегменте также доступны 8-ядерные процессоры Xeon и Nehalem (Intel) и 12-ядерные Opteron (AMD).[4]

Кэширование

Кэширование — это использование дополнительной быстродействующей памяти (кэша, англ. cache) для хранения копий блоков информации из основной (оперативной) памяти, вероятность обращения к которым в ближайшее время велика.

Различают кэши 1-, 2- и 3-го уровней (обозначаются L1, L2 и L3 — от Level 1, Level 2 и Level 3). Кэш 1-го уровня имеет наименьшую латентность (время доступа), но малый размер, кроме того, кэши первого уровня часто делаются многопортовыми. Так, процессоры AMD K8 умели производить одновременно 64-битные запись и чтение, либо два 64-битных чтения за такт, AMD K8L может производить два 128-битных чтения или записи в любой комбинации. Процессоры Intel Core 2 могут производить 128-битные запись и чтение за такт. Кэш 2-го уровня обычно имеет значительно большую латентность доступа, но его можно сделать значительно больше по размеру. Кэш 3-го уровня самый большой по объёму и довольно медленный, но всё же он гораздо быстрее, чем оперативная память.

Гарвардская архитектура

Гарвардская архитектура отличается от архитектуры фон Неймана тем, что программный код и данные хранятся в разной памяти. В такой архитектуре невозможны многие методы программирования (например, программа не может во время выполнения менять свой код; невозможно динамически перераспределять память между программным кодом и данными); зато гарвардская архитектура позволяет более эффективно выполнять работу в случае ограниченных ресурсов, поэтому она часто применяется во встраиваемых системах.

Параллельная архитектура

Архитектура фон Неймана обладает тем недостатком, что она последовательная. Какой бы огромный массив данных ни требовалось обработать, каждый его байт должен будет пройти через центральный процессор, даже если над всеми байтами требуется провести одну и ту же операцию. Этот эффект называется узким горлышком фон Неймана.

Для преодоления этого недостатка предлагались и предлагаются архитектуры процессоров, которые называются параллельными. Параллельные процессоры используются в суперкомпьютерах.

Возможными вариантами параллельной архитектуры могут служить (по классификации Флинна):

  • SISD — один поток команд, один поток данных;
  • SIMD — один поток команд, много потоков данных;
  • MISD — много потоков команд, один поток данных;
  • MIMD — много потоков команд, много потоков данных.

Цифровые сигнальные процессоры

Для цифровой обработки сигналов, особенно при ограниченном времени обработки, применяют специализированные высокопроизводительные сигнальные микропроцессоры (DSP) с параллельной архитектурой.

Процесс изготовления

Первоначально перед разработчиками ставится техническое задание, исходя из которого принимается решение о том, какова будет архитектура будущего процессора, его внутреннее устройство, технология изготовления. Перед различными группами ставится задача разработки соответствующих функциональных блоков процессора, обеспечения их взаимодействия, электромагнитной совместимости. В связи с тем, что процессор фактически является цифровым автоматом, полностью отвечающим принципам булевой алгебры, с помощью специализированного программного обеспечения, работающего на другом компьютере, строится виртуальная модель будущего процессора. На ней проводится тестирование процессора, исполнение элементарных команд, значительных объёмов кода, отрабатывается взаимодействие различных блоков устройства, ведётся оптимизация, ищутся неизбежные при проекте такого уровня ошибки.

После этого из цифровых базовых матричных кристаллов и микросхем, содержащих элементарные функциональные блоки цифровой электроники, строится физическая модель процессора, на которой проверяются электрические и временные характеристики процессора, тестируется архитектура процессора, продолжается исправление найденных ошибок, уточняются вопросы электромагнитной совместимости (например, при практически рядовой тактовой частоте в 10 ГГц отрезки проводника длиной в 7 мм уже работают как излучающие или принимающие антенны).

Затем начинается этап совместной работы инженеров-схемотехников и инженеров-технологов, которые с помощью специализированного программного обеспечения преобразуют электрическую схему, содержащую архитектуру процессора, в топологию кристалла. Современные системы автоматического проектирования позволяют, в общем случае, из электрической схемы напрямую получить пакет трафаретов для создания масок. На этом этапе технологи пытаются реализовать технические решения, заложенные схемотехниками, с учётом имеющейся технологии. Этот этап является одним из самых долгих и сложных в разработке и иногда требует компромиссов со стороны схемотехников по отказу от некоторых архитектурных решений. Следует отметить, что ряд производителей заказных микросхем (foundry) предлагает разработчикам (дизайн-центру или fabless) компромиссное решение, при котором на этапе конструирования процессора используются представленные ими стандартизованные в соответствии с имеющейся технологией библиотеки элементов и блоков (Standard cell). Это вводит ряд ограничений на архитектурные решения, зато этап технологической подгонки фактически сводится к игре в конструктор «Лего». В общем случае, изготовленные по индивидуальным проектам микропроцессоры являются более быстрыми по сравнению с процессорами, созданными на основании имеющихся библиотек.

Следующим, после этапа проектирования, является создание прототипа кристалла микропроцессора. При изготовлении современных сверхбольших интегральных схем используется метод литографии. При этом, на подложку будущего микропроцессора (тонкий круг из монокристаллического кремния, либо сапфира) через специальные маски, содержащие прорези, поочерёдно наносятся слои проводников, изоляторов и полупроводников. Соответствующие вещества испаряются в вакууме и осаждаются сквозь отверстия маски на кристалле процессора. Иногда используется травление, когда агрессивная жидкость разъедает не защищённые маской участки кристалла. Одновременно на подложке формируется порядка сотни процессорных кристаллов. В результате появляется сложная многослойная структура, содержащая от сотен тысяч до миллиардов транзисторов. В зависимости от подключения транзистор работает в микросхеме как транзистор, резистор, диод или конденсатор. Создание этих элементов на микросхеме отдельно, в общем случае, не выгодно. После окончания процедуры литографии подложка распиливается на элементарные кристаллы. К сформированным на них контактным площадкам (из золота) припаиваются тонкие золотые проводники, являющиеся переходниками к контактным площадкам корпуса микросхемы. Далее, в общем случае, крепится теплоотвод кристалла и крышка микросхемы.

Затем начинается этап тестирования прототипа процессора, когда проверяется его соответствие заданным характеристикам, ищутся оставшиеся незамеченными ошибки. Только после этого микропроцессор запускается в производство. Но даже во время производства идёт постоянная оптимизация процессора, связанная с совершенствованием технологии, новыми конструкторскими решениями, обнаружением ошибок.

Следует отметить, что параллельно с разработкой универсальных микропроцессоров, разрабатываются наборы периферийных схем ЭВМ, которые будут использоваться с микропроцессором и на основе которых создаются материнские платы. Разработка микропроцессорного набора (чипсета, англ. chipset) представляет задачу, не менее сложную, чем создание собственно микросхемы микропроцессора.

В последние несколько лет наметилась тенденция переноса части компонентов чипсета (контроллер памяти, контроллер шины PCI Express) в состав процессора (подробнее см.: Система на кристалле).

Энергопотребление процессоров

С технологией изготовления процессора тесно связано и его энергопотребление.

Первые процессоры архитектуры x86 потребляли мизерное (по современным меркам) количество энергии, составляющее доли ватта. Увеличение количества транзисторов и повышение тактовой частоты процессоров привело к существенному росту данного параметра. Наиболее производительные модели требуют до 130 и более ватт. Несущественный на первых порах фактор энергопотребления, сейчас оказывает серьёзное влияние на эволюцию процессоров:

  • совершенствование технологии производства для уменьшения потребления, поиск новых материалов для снижения токов утечки, понижение напряжения питания ядра процессора;
  • появление сокетов (разъемов для процессоров) с большим числом контактов (более 1000), большинство которых предназначено для питания процессора. Так у процессоров для популярного сокета LGA775 число контактов основного питания составляет 464 штуки (около 60 % от общего количества);
  • изменение компоновки процессоров. Кристалл процессора переместился с внутренней на внешнюю сторону, для лучшего отвода тепла к радиатору системы охлаждения;
  • интеграция в кристалл температурных датчиков и системы защиты от перегрева, снижающей частоту процессора или вообще останавливающей его при недопустимом увеличении температуры;
  • появление в новейших процессорах интеллектуальных систем, динамически меняющих напряжение питания, частоту отдельных блоков и ядер процессора, и отключающих не используемые блоки и ядра;
  • появление энергосберегающих режимов для «засыпания» процессора, при низкой нагрузке.

Тепловыделение процессоров и отвод тепла

Для теплоотвода от микропроцессоров применяются пассивные радиаторы и активные кулеры.

Измерение и отображение температуры микропроцессора

Для измерения температуры микропроцессора, обычно внутри микропроцессора, в области центра крышки микропроцессора устанавливается датчик температуры микропроцессора. В микропроцессорах Intel датчик температуры — термодиод или транзистор с замкнутыми коллектором и базой в качестве термодиода, в микропроцессорах AMD — терморезистор.

Производители

Наиболее популярные процессоры сегодня производят фирмы Intel, AMD и IBM.

Большинство процессоров, используемых в настоящее время, являются Intel-совместимыми, то есть имеют набор инструкций и интерфейсы программирования, сходные с используемыми в процессорах компании Intel.

Среди процессоров от Intel: 8086, i286, i386, i486, Pentium, Pentium II, Pentium III, Celeron (упрощённый вариант Pentium), Pentium 4, Core 2 Quad, Core i3, Core i5, Core i7, Xeon (серия процессоров для серверов), Itanium, Atom (серия процессоров для встраиваемой техники) и др. AMD имеет в своей линейке процессоры архитектуры x86 (аналоги 80386 и 80486, семейство K6 и семейство K7 — Athlon, Duron, Sempron) и x86-64 (Athlon 64, Athlon 64 X2, Phenom, Opteron и др.). Процессоры IBM (POWER6, POWER7, Xenon, PowerPC) используются в суперкомпьютерах, в видеоприставках 7-го поколения, встраиваемой технике; ранее использовались в компьютерах фирмы Apple.

По данным компании IDC, по итогам 2009 г.на рынке микропроцессоров для настольных ПК, ноутбуков и серверов доля корпорации Intel составила 79,7 %, доля AMD — 20,1 %.[5]

Доли по годам:

Год Intel AMD Другие
2007 78,9 % 13,1 % 8,0 %
2008 80,4 % 19,3 % 0,3 %
2009 79,7 % 20,1 % 0,2 %
2010 80,8 % 18,9 % 0,3 %
2011[6] 83,7 % 10,2 % 6,1 %

СССР/Россия

Основная статья: Российские микропроцессоры

В советское время одним из самых востребованных из-за его непосредственной простоты и понятности, стал задействованный в учебных целях МПК КР580 — набор микросхем, копия набора микросхем Intel 82xx. Использовался в отечественных компьютерах, таких как Радио 86РК, ЮТ-88, Микроша и т. д.

Разработкой микропроцессоров в России занимаются ЗАО «МЦСТ», НИИСИ РАН и ЗАО «ПКК Миландр». Также разработку специализированных микропроцессоров, ориентированных на создание нейронных систем и цифровую обработку сигналов, ведут НТЦ «Модуль» и ГУП НПЦ «ЭЛВИС». Ряд серий микропроцессоров также производит ОАО «Ангстрем».

НИИСИ разрабатывает процессоры серии Комдив на основе архитектуры MIPS. Техпроцесс — 0,5 мкм, 0,3 мкм; КНИ.

  • КОМДИВ32 (англ.), 1890ВМ1Т, в том числе в варианте КОМДИВ32-С (5890ВЕ1Т), стойком к воздействию факторов космического пространства (ионизирующему излучению)
  • КОМДИВ64 (англ.), КОМДИВ64-СМП
  • Арифметический сопроцессор КОМДИВ128

ЗАО ПКК Миландр разрабатывает 16-разрядный процессор цифровой обработки сигналов и 2-ядерный процессор:

  • 2011 год, 1967ВЦ1Т[7] — 16-разрядный процессор цифровой обработки сигналов, частота 50 МГц, КМОП 0,35 мкм
  • 2011 год, 1901ВЦ1Т — 2-ядерный процессор, DSP (100 МГц) и RISC (100 МГц), КМОП 0,18 мкм

НТЦ «Модуль» разработал и предлагает микропроцессоры семейства NeuroMatrix:[8]

  • 1998 год, 1879ВМ1 (NM6403) — высокопроизводительный специализированный микропроцессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой. Технология изготовления — КМОП 0,5 мкм, частота 40 МГц.
  • 2007 год, 1879ВМ2 (NM6404) — модификация 1879ВМ1 с увеличенной до 80 МГц тактовой частотой и 2Мбитным ОЗУ, размещённым на кристалле процессора. Технология изготовления — 0,25 мкм КМОП.
  • 2009 год, 1879ВМ4 (NM6405) — высокопроизводительный процессор цифровой обработки сигналов с векторно-конвейерной VLIW/SIMD архитектурой на базе запатентованного 64-разрядного процессорного ядра NeuroMatrix. Технология изготовления — 0,25 мкм КМОП, тактовая частота 150 МГц.
  • СБИС 1879ВМ3 — программируемый микроконтроллер с ЦАП и АЦП. Частота выборок до 600 МГц (АЦП) и до 300 МГц (ЦАП). Максимальная тактовая частота 150 МГц.[9]

ГУП НПЦ ЭЛВИС разрабатывает и производит микропроцессоры серии «Мультикор»[10], отличительной особенностью которых является несимметричная многоядерность. При этом физически в одной микросхеме содержатся одно CPU RISC-ядро с архитектурой MIPS32, выполняющее функции центрального процессора системы, и одно или более ядер специализированного процессора-акселератора для цифровой обработки сигналов с плавающей/фиксированной точкой ELcore-xx (ELcore = Elvees’s core), основанного на «гарвардской» архитектуре. CPU-ядро является ведущим в конфигурации микросхемы и выполняет основную программу. Для CPU-ядра обеспечен доступ к ресурсам DSP-ядра, являющегося ведомым по отношению к CPU-ядру. CPU микросхемы поддерживает ядро ОС Linux 2.6.19 или ОС жесткого реального времени QNX 6.3 (Neutrino).

  • 2004 год, 1892ВМ3Т (MC-12) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SISD ядро ELcore-14. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 240 MFLOPs (32 бита).
  • 2004 год, 1892ВМ2Я (MC-24) — однокристальная микропроцессорная система с двумя ядрами. Центральный процессор — MIPS32, сигнальный сопроцессор — SIMD ядро ELcore-24. Технология изготовления — КМОП 250 нм, частота 80 МГц. Пиковая производительность 480 MFLOPs (32 бита).
  • 2006 год, 1892ВМ5Я (MC-0226) — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD ядро ELcore-26. Технология изготовления — КМОП 250 нм, частота 100 МГц. Пиковая производительность 1200 MFLOPs (32 бита).
  • 2008 год, NVCom-01 («Навиком») — однокристальная микропроцессорная система с тремя ядрами. Центральный процессор — MIPS32, 2 сигнальных сопроцессора — MIMD DSP-кластер DELCore-30 (Dual ELVEES Core). Технология изготовления — КМОП 130 нм, частота 300 МГц. Пиковая производительность 3600 MFLOPs (32 бита). Разработан в качестве телекоммуникационного микропроцессора, содержит встроенную функцию 48-канальной ГЛОНАСС/GPS навигации.
  • 2012 год, «Навиком-02T» — однокристальная микропроцессорная система с тремя ядрами. Архитектура микропроцессора — трёхъядерная гетерогенная. Ведущий процессор — MIPS32, сигнальныЙ сопроцессор — MIMD-типа на базе ядер из библиотеки платформы «МУЛЬТИКОР», программируемое ядро сигнального процессора, организованного как двухпроцессорный кластер DSP с плавающей и фиксированной точкой, дополненный многоканальным коррелятором для ГЛОНАСС/GPS-навигации. DSP-кластер следующего поколения имеет ряд новых возможностей, в том числе: набор графических команд; аппаратный ускоритель кодера Хаффмана; возможность отработки DSP внешних прерываний; возможность доступа DSP-ядер к внешнему адресному пространству; гибкая граница программной памяти кластера DSP; прерывания от исключительных ситуаций при операциях с числами с плавающей запятой. Технология изготовления — КМОП 130 нм, частота 250 МГц. Пиковая производительность — 4000 MFLOPs (32 бита) и 24000 MOPs в формате фиксированной точки int8. Имеет пониженную потребляемую мощность.

В качестве перспективного проекта НПЦ ЭЛВИС представлен MC-0428 — процессор MultiForce — однокристальная микропроцессорная система с одним центральным процессором и четырьмя специализированными ядрами. Технология изготовления — КМОП 130 нм, частота — до 340 МГц. Пиковая производительность ожидается не менее 8000 MFLOPs (32 бита).

ОАО «Ангстрем» производит (не разрабатывает) следующие серии микропроцессоров:

  • 1839 — 32-разрядный VAX-11/750-совместимый микропроцессорный комплект из 6 микросхем. Технология изготовления — КМОП, тактовая частота 10 МГц.
  • 1836ВМ3 — 16-разрядный LSI-11/23-совместимый микропроцессор. Программно совместим с PDP-11 фирмы DEC. Технология изготовления — КМОП, тактовая частота 16 МГц.
  • 1806ВМ2 — 16-разрядный LSI/2-совместимый микропроцессор. Программно совместим с LCI-11 фирмы DEC.Технология изготовления — КМОП, тактовая частота 5 МГц.
  • Л1876ВМ1 32-разрядный RISC микропроцессор. Технология изготовления — КМОП, тактовая частота 25 МГц.

Из собственных разработок Ангстрема можно отметить однокристальную 8-разрядную RISC микроЭВМ Тесей.

Компанией МЦСТ разработано и внедрено в производство семейство универсальных SPARC-совместимых RISC-микропроцессоров с проектными нормами 90, 130 и 350 нм и частотами от 150 до 1000 МГц (подробнее см. статью о серии — МЦСТ-R и о вычислительных комплексах на их основе Эльбрус-90микро). Также разработан VLIW-процессор Эльбрус с оригинальной архитектурой ELBRUS, используется в комплексах Эльбрус-3М1). Прошел государственные испытания и рекомендован к производству новый процессор Эльбрус-2С+ отличающийся от процессора Эльбрус тем, что содержит два ядра на архитектуре VLIW и четыре ядра DSP (Elcore-09). Основные потребители российских микропроцессоров — предприятия ВПК.

Китай

  • Семейство Loongson (Godson)
  • Семейство ShenWei (SW)

Япония

  • NEC VR (MIPS, 64 bit)
  • Hitachi VR (RISC)[11]

Определение модели

В Linux определить модель и параметры установленного процессора, не открывая корпуса, можно прочитав файл /proc/cpuinfo.

В операционных системах Windows узнать модель установленного процессора, тактовую частоту, количество ядер и т. д. можно, например, через программу dxdiag.

См. также

  • Сопроцессор
  • Криптопроцессор
  • Аппаратная платформа компьютера

Примечания

  1. 4004 datasheet (в документе говорится, что цикл инструкции длится 10,8 микросекунд, а в рекламных материалах Intel — 108 кГц)
  2. AMD Barcelona уже в продаже
  3. AMD Phenom: тесты настоящего четырёхъядерного процессора
  4. AMD дала зелёный свет 8- и 12-ядерным процессорам серии Opteron 6100 overclockers.ua
  5. CNews 2010 AMD «откусила» долю рынка у Intel
  6. Intel укрепляет позиции на процессорном рынке — Бизнес — Исследования рынка — Компьюлента
  7. 1967ВЦ1Т − Миландр
  8. Информация о микропроцессорах производства НТЦ Модуль
  9. НТЦ «Модуль»
  10. Информация о микропроцессорах производства ГУП НТЦ Элвис
  11. Made-in-Japan Microprocessors May 1997

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: Вильямс, 2007. — С. 59—241. — ISBN 0-7897-3404-4

Ссылки

  • Краткая история процессоров: 31 год из жизни архитектуры х86
  • Правительство обнулило пошлины на процессоры 18 сентября 2007
  • Крис Касперски. RISC vs. CISC
  • Процессор энциклопедия Алфёрова
  • Сравнение производительности процессоров (http://www.cpubenchmark.net)
  • Сравнение производительности мобильных процессоров (www.notebookcheck-ru.com)
  • Исследование эффективности ALU и FPU процессоров разных поколений от TestLabs.kz

Есть более полная статья

 Просмотр этого шаблона Технологии цифровых процессоров
Архитектура

CISC · EDGE · EPIC · MISC · URISC · RISC · VLIW · ZISC · Фон Неймана · Гарвардская

8 бит  · 16 бит · 32 бит · 64 бит · 128 бит

Параллелизм
Pipeline Конвейер · In-Order & Out-of-Order execution · Переименование регистров · Speculative execution
Уровни Бит · Инструкций · Суперскалярность · Данных · Задач
Потоки Многопоточность · Simultaneous multithreading · Hyperthreading · Superthreading · Аппаратная виртуализация
Классификация Флинна SISD · SIMD · MISD · MIMD
Реализации DSP · GPU · SoC · PPU · Векторный процессор · Математический сопроцессор • Микропроцессор · Микроконтроллер
Компоненты Barrel shifter · FPU · BSB · MMU · TLB · Регистровый файл · control unit · АЛУ • Демультиплексор · Мультиплексор · Микрокод · Тактовая частота • Корпус • Регистры • Кэш (Кэш процессора)
Управление питанием APM · ACPI · Clock gating · Динамическое изменение частоты • Динамическое изменение напряжения
 Просмотр этого шаблона Компоненты персонального компьютера
Системный блок

Блок питания • Охлаждение • Материнская плата • Процессор Шины • Видеокарта • Звуковая карта • Сетевая плата

Память

Оперативная память • Запоминающее устройство с произвольным доступом

Носители и дисководы

Жёсткий диск • Твердотельный накопитель (Флеш-память • USB-флеш) • Оптический привод (CD • DVD • BD) • НГМД (Дискета) • Стример • Кардридер

Вывод

Динамик • Монитор • Принтер • Графопостроитель (плоттер)

Ввод

Клавиатура • Мышь • Трекбол • TrackPoint • Тачпад • Сенсорный экран • Цифровая ручка • Световое перо • Графический планшет • Микрофон • Сканер • Веб-камера

Игры

Джойстик • Руль • Штурвал • Педали • Пистолет • Paddle • Геймпад • Дэнспад • Трекер

Прочее

Модем • ТВ-тюнер • Сетевой фильтр • ИБП

 Просмотр этого шаблона Микроконтроллеры
Архитектура
8-бит MCS-51 • MCS-48 • PIC • AVR • Z8 • H8 • COP8 • 68HC08 • 68HC11
16-бит MSP430 • MCS-96 • MCS-296 • PIC24 • MAXQ • Nios • 68HC12 • 68HC16
32-бит ARM • MIPS • AVR32 • PIC32 • 683XX • M32R • SuperH • Nios II • Am29000 • LatticeMico32 • MPC5xx • PowerQUICC • Parallax Propeller
Производители Analog Devices • Atmel • Silabs • Freescale • Fujitsu • Holtek • Hynix • Infineon • Intel • Microchip • Maxim • Parallax • NXP Semiconductors • Renesas • Texas Instruments • Toshiba • Ubicom • Zilog • Cypress
Компоненты Регистр • Процессор • SRAM • EEPROM • Флеш-память • Кварцевый резонатор • Кварцевый генератор • RC-генератор • Корпус
Периферия Таймер • АЦП • ЦАП • Компаратор • ШИМ-контроллер • Счётчик • LCD • Датчик температуры • Watchdog Timer
Интерфейсы CAN • UART • USB • SPI • I²C • Ethernet • 1-Wire
ОС FreeRTOS • μClinux • BeRTOS • ChibiOS/RT • eCos • RTEMS • Unison • MicroC/OS-II • Nucleus
Программирование JTAG • C2 • Программатор • Ассемблер • Прерывание • MPLAB • AVR Studio • MCStudio

Слайд 1Процессор
Подготовил Ученик
8 химико-биологического класса

№1
Каршков
Александр

Процессор Подготовил   Ученик  8 химико-биологического класса №1 Каршков Александр


Слайд 2Процессор — электронный блок либо интегральная схема

(микропроцессор), исполняющая машинные инструкции (код программ), главная

часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Процессор - электронный блок либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код


Слайд 3История появления и развития первых процессоров для

компьютеров берет своё начало в середине двадцатого

века. Сейчас уже невозможно себе представить, что как-то можно обойтись без персональных компьютеров, но не так давно, всего каких-то сорок лет назад, слова «компьютер» и «процессор» были известны лишь узкому кругу специалистов. И лишь в 1971 году произошло знаковое событие — никому тогда ещё неизвестная фирма Intel из американского города Санта-Клара дала жизнь первому микропроцессору

История появления и развития первых процессоров для компьютеров берет своё начало в


Слайд 4Основные поставщики процессоров – это AMD и

Intel. Сносное соотношение цены и качества свойственно

для процессоров фирмы AMD. Отличная продуктивность вычислительных операций позволяет пользователю насладиться качеством работы игр и скоростью обработки файлов.
Процессоры Intel обладают высокой частотой, это крайне положительно сказывается на эффективности работы и производительности компьютера.

Основные поставщики процессоров – это AMD и Intel. Сносное соотношение цены и


Слайд 5Оптимальный вариант процессора
Для обработки видео, тем кто

любит проводить время за новыми играми и

фильмами в HD качестве, могут подойти высоко мощные процессоры, такие как Phenom II X4, AMD Phenom II X6, Intel core i5 и i7.
Для обработки офисных документов, скажем так для бюджетного варианта, достаточно процессора AMD Athlon II X2 или Intel core i3

Оптимальный вариант процессора Для обработки видео, тем кто любит проводить время за


Слайд 6Первые процессоры компьютеров 50-х гг. прошлого века

работали на основе механического реле, позже появлялись

модели, задействовавшие электронные лампы, затем – транзисторы. Сами же компьютеры, использующие данные виды процессоров, представляли собой огромные, очень дорогие и сложные устройства.

Первые процессоры компьютеров 50-х гг. прошлого века работали на основе механического реле,


Слайд 7Компоненты процессора, отвечающие за производимые вычисления, необходимо

было соединить в одну микросхему. Этого удалось

достигнуть лишь после появления интегральных полупроводниковых схем. Хотя в первое время разработчики даже и не догадывались, что данная технология может принести пользу, поэтому устройства еще довольно продолжительное время изготавливались как набор отдельных микросхем.

Компоненты процессора, отвечающие за производимые вычисления, необходимо было соединить в одну микросхему.


Слайд 8Классифицировать микропроцессоры можно по разным признакам. По

целевому предназначению можно выделить такие виды:

–процессоры для серверов и суперкомпьютеров;
–процессоры для персональных компьютеров;
–процессоры для ноутбуков;
–процессоры для мобильных систем;
–процессоры для встраиваемых систем.
По виду архитектуры можно выделить процессоры с полным и сокращенным набором команд; по числу ядер: одноядерные и многоядерные.

Классифицировать микропроцессоры можно по разным признакам. По целевому предназначению можно выделить такие


Слайд 9Процессор является одним из тех устройств, которые

все время должен работать. Процессор ПК не

может быть выключен. Даже если на наш взгляд процессор ничего не делает, все равно выполняется какая-то программа.

Процессор является одним из тех устройств, которые все время должен работать. Процессор


Слайд 10Процессор работает, по сравнению с другими устройствами

компьютера, с наибольшей скоростью. И самыми медленными

по сравнению с ним являются внешние устройства, в том числе и человек. Так, например, работая с клавиатурой, человек отправляет в компьютер в среднем один байт в секунду (нажимает на одну клавишу в секунду) . Процессор обрабатывает такую и формацию за 0,000001 секунды. А что же делает процессор в остальное время, если он не может выключаться? А в остальное время он может получать сигналы от мыши, от других компьютеров, от гибких и жестких дисков. Он успевает несколько раз в течение секунды подзарядить оперативную память, обслужить внутренние часы компьютера, отдать распоряжение, как правильно отображать информацию на экране, и выполнить множество прочих дел.

Процессор работает, по сравнению с другими устройствами компьютера, с наибольшей скоростью. И


Слайд 11Схема процессора (упрощенная)
Арифметико-
Логическое
Устройство
данные
Регистр
Счетчик команд
Регистр команд
данные
БЛОК
УПРАВЛЕНИЯ
Кэш

данных
Кэш команд
К
О
М
А
Н
Д
А

данные
команды

Схема процессора (упрощенная) Арифметико- Логическое Устройство  данные Регистр Счетчик команд Регистр


Содержание

  • 1 Центральный процессор
  • 2 История Создания
    • 2.1 intel 4004
    • 2.2 intel 8008
    • 2.3 MOS Technology 6502
    • 2.4 Intel i386
    • 2.5 Закон Мура
    • 2.6 Будущее и настоящие
  • 3 Xарактеристики
  • 4 Архитектура(Наиболее популярная)
  • 5 Устройство процессора
    • 5.1 Схема машинного цикла
  • 6 Полезные ссылки

Центральный процессор

AMD Phenom II X4 840, вид сверху.

Центра́льный проце́ссор (ЦП; также центра́льное проце́ссорное устро́йство — ЦПУ; англ. central processing unit, CPU, дословно — центральное обрабатывающее устройство) — электронный блок, либо интегральная схема (микропроцессор), исполняющая машинные инструкции (код программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором.

Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.

История Создания

intel 4004

В 60-х годах появились первые интегральные микросхемы которые на долгое время стали неотъемлемой частью любого вычислительного устройства. Началом эпохи современных CPU можно смело назвать 1971-й год.
Первым однокристальным микропроцессором считается 4-битный Intel 4004, вышедший 15 ноября 1971 года. Компания Intel только начинала свой путь становления и ее создатели, Роберт Нойс, Гордон Мур и Эндрю Гроув, потратили немало сил на процесс развития. Благодаря вкладу итальянского физика Федерико Фаджина, инженерам компании удалось разместить ключевые компоненты на один чип и создать микропроцессор 4004.
Intel 4004 производился по 10-мкм техпроцессу, насчитывал 2250 транзисторов и работал на частоте 108 кГц (проводил 92 600 операций в секунду). Частота синхронизации была 740 кГц. Объем памяти доходил до 4 Кб, разрядность шины — 4 бита. Площадь кристалла составляла 12 мм2.

Intel 4004

intel 8008

В начале 70-х компания выпустила первый 8-битный центральный процессор Intel 8008. Он разрабатывался одновременно с 4004 под заказ для Computer Terminal Corporation (в последствии Datapoint). Но компания отказалась от CPU (как и от сотрудничества с Intel) из-за того, что процесс создания микросхемы вышел за пределы установленных сроков, а его характеристики не соответствовали ожиданиям.

По технических характеристикам микропроцессор 8008 во многом соответствовал предыдущей версии. Он производился по тому же 10-мкм техпроцессу и содержал 3500 транзисторов. Внутренний стек поддерживал 8 уровней, а объем памяти был 16 Кб. Тактовая частота оказалась ниже, чем у 4004, она составляла 500 кГц. По скорости 8-битный процессор Intel отставал от 4-битного. Разрядность шины была 8-бит. Процессор мог обратиться к 8 портам ввода и 24 портам вывода.

Intel 8008

MOS Technology 6502

MOS Technology 6502

В 1975 году компания MOS Technology представила 8-разрядный микропроцессор 6502. По сути, этот процессор был обновленной версией 6501, потерпевшей неудачу из-за совместимости по выводам с Motorola 6800. По характеристикам CPU уступал конкурентам 8080 и 6800. У него была 16-битная адресная шина, 64 Кб оперативной памяти. Тактовая частота составляла всего 1 МГц. Процессор имел CISC-архитектуру.

Преимуществом данной модели была цена — всего $25 (в разы дешевле чем у Intel и Motorola). Это поспособствовало стремительному росту продаж процессора.

6502 использовался в таких ПК, как Apple I, Apple II, Commodore PET и т.д. Также процессоры данной серии нашел применение в видеоиграх, начиная с приставки Atari 2600, использующую модель 6507 с меньшим количеством выводов и возможностью адресации только 8 Кб памяти.

MOS Technology предоставили лицензии компаниями Rockwell, Synertek на производство процессоров и применение 6502. Существовал советский аналог 4К602ВМ1.

Intel i386

Intel i386

В 1985 году вышел 32-битный процессор с архитектурой x86 третьего поколения Intel 80386 (или i386). Процессор сохранил обратную совместимость с 8086 и 80286. Производился по 1,5-мкм — 1,0-мкм техпроцессу. Через страничное преобразование процессор мог адресовать до 4 Гб физической памяти и до 64 Гб виртуальной памяти. Тактовая частота составляла 12 МГц — 40 МГц.
Процессор Intel i386 представлялся в разных модификациях, отличающихся между собой производительностью, потребляемой мощностью, разъемами, корпусами и другими характеристиками. Модели: 386DX (DX — Double-word eXternal), 386SX, 386SL и 386EX (модификация процессора 386SX).

Первым компьютером, использующим процессор, стал Compaq Deskpro 386. Также модель была первым 32-разрядным процессором для настольных и портативных IBM PC.
i386 было довольно много клонов, которые производились компаниями AMD, Cyrix и IBM. Топовая модель компании AMD была Am386DX, которая не уступала в производительности, стоила дешевле и имела тактовую частоту 40 МГц. Клоны компании Cyrix 86SLC и 486DLC также хорошо воспринялись пользователями. Наиболее известные клоны компании IBM были процессоры 386SLC и 386DLC, которые использовались в настольных компьютерах IBM PS/2 и PS/ValuePoint.

Закон Мура

ProcEvolin21-733x760.jpg

На дворе конец 80-х. Еще в начале 60-х один из основателей компании Intel Гордон Мур формулировал так называемый «Закон Мура». Звучит он так:
Каждые 24 месяца количество транзисторов, размещенных на кристалле интегральной схемы, удваивается.
Назвать этот закон законом сложно. Вернее будет окрестить его эмпирическим наблюдением. Сопоставив темпы развития технологий, Мур сделал вывод, что может сформироваться подобная тенденция.
Но уже во время разработки четвертого поколения процессоров Intel i486 инженеры столкнулись с тем, что уже достигли потолка производительности и больше не могут разместить большее количество процессоров на той же площади. На тот момент технологии не позволяли этого.

В качестве решения был найден вариант с использованием рядом дополнительных элементов

кэш-памяти
конвейера
встроенного сопроцессора
множителя

ProcEvolin22.jpg

Часть вычислительной нагрузки ложилась на плечи этих четырех узлов. В результате, появление кэш-памяти с одной стороны усложнило конструкцию процессора, с другой – он стал значительно мощнее.
Процессор Intel i486 состоял уже из 1,2 млн транзисторов, а максимальная частота его работы достигла 50 МГц.

В 1995 году к разработке присоединяется компания AMD и выпускает самый быстрый на тот момент i486-совместимый процессор Am5x86 на 32-битной архитектуре. Изготавливался он уже по 350 нанометровому техпроцессу, а количество установленных процессоров достигло 1,6 млн штук. Тактовая частота повысилась до 133 МГц.

Но гнаться за дальнейшим наращиванием количества установленных на кристалле процессоров и развитии уже утопической архитектуры CISC (Complex Instruction Set Computing) чипмейкеры не решились. Вместо этого американский инженер Дэвид Паттерсон предложил оптимизировать работу процессоров, оставив лишь самые необходимые вычислительные инструкции.

Так производители процессоров перешли на платформу RISC (Reduced Instruction Set Computing]. Но и этого оказалось мало.

Вместо борьбы за количество транзисторов, производители чипов стали пересматривать архитектуру их работы. Отказ от «ненужных» команд, выполнение инструкций в один такт, наличие регистров общего значения и конвейеризация позволили оперативно наращивать тактовую частоту и мощность процессоров, не извращаясь с количеством транзисторов.

Вот лишь некоторые из появившихся с период с 1980 по 1995 год архитектур

SPARC
ARM
PowerPC
Intel P5
AMD K5
Intel P6.
В их основе лежала платформа RISC, а в некоторых случаях и частичное, совмещенное использование CISC-платформы.

Но развитие технологий вновь подталкивало чипмейкеров продолжить наращивание процессоров.
В августе 1999 года на рынок выходе AMD K7 Athlon, изготовленный по 250 нанометровому техпроцессу и включающий 22 млн транзисторов. Позднее планку подняли до 38 млн процессоров. Потом до 250 млн.

Увеличивался технологический процессор, росла тактовая частота. Но, как гласит физика, всему есть предел.

Будущее и настоящие

«Закон Мура» признан недействительным еще с 2016 года. Об этом официально заявил крупнейший производитель процессоров Intel. Удваивать вычислительную мощность на 100% каждые два года чипмейкеры больше не состоянии.

И теперь у производителей процессоров есть несколько малоперспективных вариантов
  • Первый вариант – квантовые компьютеры. Попытки построить компьютер, который использует для представления информации частицы, уже были. В мире существует несколько подобных квантовых устройств, но они способны справляться лишь с алгоритмами небольшой сложности.К тому же, о серийном запуске подобных устройств в ближайшие десятилетия не может идти и речи. Дорого, неэффективно и… медленно!Да, квантовые компьютеры потребляют намного меньше энергии, чем их современные коллеги, но при этом работать они будут медленнее до тех пор, пока разработчики и производители комплектующих не перейдут на новую технологию.
  • Второй вариант – процессоры со слоями транзисторов. О данной технологии всерьез задумались и в Intel, и в AMD. Вместо одного слоя транзисторов планируют использовать несколько. Похоже, что в ближайшие годы вполне могут появится процессоры, в которых будут важны не только количество ядер и тактовая частота, но и количество транзисторных слоев.Решение вполне имеет право на жизнь, и таким образом монополистам удастся доить потребителя еще пару десятков лет, но, в конце концов, технология опять-таки упрется в потолок.Сегодня же, понимая стремительное развитие ARM-архитектуры, Intel провела негромкий анонс чипов семейства Ice Lake. Процессоры будут изготавливаться по 10-нанометровому технологическому процессу и станут основой для смартфонов, планшетов и мобильных устройств. Но произойдет это в 2019 году.

Xарактеристики

Производители процессоров
На рынке процессоров два крупных, лидирующих производителя: Intel и AMD. Характеристики процессоров у разных производителей различны. Многое зависит от совершенства технологий, использованных материалов, компоновки и других нюансов.
Тактовая частота процессора
Тактовая частота указывает скорость работы процессора в герцах (ГГц) – количество рабочих операций в секунду. Тактовая частота процессора подразделяется на внутреннюю и внешнюю. Да, эта характеристика процессора значительно влияет на скорость работы вашего ПК, но производительность зависит не только он неё.Внутренняя тактовая частота обозначает темп, с которым процессор обрабатывает внутренние команды. Чем выше показатель – тем быстрее внешняя тактовая частота.Внешняя тактовая частота определяет, с какой скоростью процессор обращается к оперативной памяти.
Разрядность процессора
Разрядность представляет собой предельное количество разрядов двоичного числа, над которым единовременно может производиться машинная операция передачи информации. Чем больше разрядность, тем выше производительность процессора. Сейчас большинство процессоров имеют разрядность в 64 бита и поддерживают от 4 гигабайт ОЗУ. Это одна из основных характеристик процессора, но далеко не единственная, при выборе нужно руководствоваться не только ей.
Размерность технологического процесса
Определяет размеры транзистора (толщину и длину затвора). Частота работы кристалла определяется частотой переключений транзисторов (из закрытого состояния в открытое). Если меньше размер, значит меньше площадь, а значит и выделение тепла. Размерность технологического процесса измеряется в нанометрах, чем меньше этот показатель, тем лучше.
Сокет или разъем

Гнездовой или щелевой разъем, предназначен для интеграции чипа ЦП в схему материнской платы. Каждый разъем допускает установку только определенного типа процессоров, сверьте сокет выбранного процессора с вашей материнской платой, она должна ему соответствовать.

  • Тип гнездового разъема:
    • PGA (Pin Grid Array) – корпус квадратной или прямоугольной формы, штырьковые контакты.
    • BGA (Ball Grid Array) – шарики припоя.
    • LGA (Land Grid Array) – контактные площадки.
Кэш-память процессора
Кэш-память процессора является одной из ключевых характеристик, на которую стоит обратить внимание при выборе. Кэш-память – массив сверхскоростной энергозависимой ОЗУ. Является буфером, в котором хранятся данные, с которыми процессор взаимодействует чаще или взаимодействовал в процессе последних операций. Благодаря этому уменьшается количество обращений процессора к основной памяти. Этот вид памяти делится на три уровня: L1, L2, L3. Каждый из уровней отличается по размеру памяти и скорости, и задачи ускорения у них отличаются. L1 — самый маленький и быстрый, L3 — самый большой и медленный. Чем больше объем кэш-памяти, тем лучше. К каждому уровню процессор обращается поочередно (от меньшего к большему), пока не обнаружит в одном из них нужную информацию. Если ничего не найдено, обращается к оперативной памяти.
Энергопотребление и тепловыделение
Чем выше энергопотребление процессора, тем выше его тепловыделение. Нужно позаботиться о достаточном охлаждении.
  • TDP (Thermal Design Power) – параметр, указывающий на то количество тепла, которое способна отвести охлаждающая система от определенного процессора при наибольшей нагрузке. Значение представлено в ваттах при максимальной температуре корпуса процессора.
  • ACP (Average CPU Power) – средняя мощность процессора, показывающая энергопотребление процессора при конкретных задачах.

Значение параметра ACP на практике всегда ниже TDP.

Рабочая температура процессора
Наивысший показатель температуры поверхности процессора, при котором возможна нормальная работа (54-100 °С). Этот показатель зависит от нагрузки на процессор и от качества отвода тепла. При превышении предела компьютер либо перезагрузится, либо просто отключится. Это очень важная характеристика процессора, которая напрямую влияет на выбор типа охлаждения.
Множитель и системная шина
Эти параметры необходимы скорее тем, кто со временем планирует разогнать свой камень. Front Side Bus – частота системной шины материнской платы. Тактовая частота процессора является произведением частоты FSB на множитель процессора. У большинства процессоров заблокирован разгон по множителю, поэтому приходится разгонять по шине. Стоит ознакомиться с этой характеристикой процессора более детально, если вы через какой-то промежуток времени захотите увеличить производительность программным способом, без апгрейда железа.
Встроенное графическое ядро
Процессор может быть оснащен графическим ядром, отвечающим за вывод изображения на ваш монитор. В последние годы, встроенные видеокарты такого рода хорошо оптимизированы и без проблем тянут основной пакет программ и большинство игр на средних или минимальных настройках. Для работы в офисных приложениях и серфинга в интернете, просмотра Full HD видео и игры на средних настройках такой видеокарты вполне достаточно, и это Intel.Что касается процессоров от компании AMD, их встроенные графические процессоры более производительные, что делает процессоры от AMD приоритетнее для любителей игровых приложений, желающих сэкономить на покупке дискретной видеокарты.
Количество ядер (потоков)

1548048188 w640 h640 protsessor-amd-socket.jpg

  • Многоядерность одна из важнейших характеристик центрального процессора, но в последнее время ей уделяют слишком много внимания. Да, сейчас уже нужно постараться, чтобы найти рабочие одноядерные процессоры, они себя благополучно изжили. На замену одноядерным пришли процессоры с 2, 4 и 8 ядрами.
  • Если 2 и 4-ядерные вошли в обиход очень быстро, процессоры с 8 ядрами пока не так востребованы. Для использования офисных приложений и серфинга в интернете достаточно 2 ядер, 4 ядра требуются для САПР и графических приложений, которым просто необходимо работать в несколько потоков.
  • Что касается 8 ядер, очень мало программ поддерживают так много потоков, а значит, такой процессор для большинства приложений просто бесполезен. Обычно, чем меньше потоков, тем больше тактовая частота. Из этого следует, что если программа, адаптированная под 4 ядра, а не под 8, на 8-ядерном процессе она будет работать медленнее. Но этот процессор отличное решение для тех, кому необходимо работать сразу в большом количестве требовательных программ одновременно. Равномерно распределив нагрузку по ядрам процессора можно наслаждаться отличной производительностью во всех необходимых программ.
  • В большинстве процессоров количество физических ядер соответствует количеству потоков: 8 ядер – 8 потоков. Но есть процессоры, где благодаря Hyper-Threading, к примеру, 4-ядерный процессор может обрабатывать 8 потоков одновременно.
Цены
в данной таблице представлены цены на новейшие процессоры ведущих производителей:

цены

Архитектура(Наиболее популярная)

Архитекту́ра проце́ссора — количественная составляющая компонентов микроархитектуры вычислительной машины (процессора компьютера) (например, регистр флагов или регистры процессора), рассматриваемая IT-специалистами в аспекте прикладной деятельности.

CISC
CISC (англ. Complex Instruction Set Computer — «компьютер с полным набором команд») — тип процессорной архитектуры, в первую очередь, с нефиксированной длиной команд, а также с кодированием арифметических действий в одной команде и небольшим числом регистров, многие из которых выполняют строго определенную функцию.

Самый яркий пример CISC архитектуры — это x86 (он же IA-32) и x86_64 (он же AMD64).
В CISC процессорах одна команда может быть заменена ей аналогичной, либо группой команд, выполняющих ту же функцию. Отсюда вытекают плюсы и минусы архитектуры: высокая производительность благодаря тому, что несколько команд могут быть заменены одной аналогичной, но большая цена по сравнению с RISC процессорами из-за более сложной архитектуры, в которой многие команды сложнее раскодировать.

ProcEvolin23.jpg

RISC
RISC (англ. Reduced Instruction Set Computer — «компьютер с сокращённым набором команд») — архитектура процессора, в котором быстродействие увеличивается за счёт упрощения инструкций: их декодирование становится более простым, а время выполнения — меньшим. Первые RISC-процессоры не имели даже инструкций умножения и деления и не поддерживали работу с числами с плавающей запятой.

По сравнению с CISC эта архитектура имеет константную длину команды, а также меньшее количество схожих инструкций, позволяя уменьшить итоговую цену процессора и энергопотребление, что критично для мобильного сегмента. У RISC также большее количество регистров.
Примеры RISC-архитектур: PowerPC, серия архитектур ARM (ARM7, ARM9, ARM11, Cortex).
В общем случае RISC быстрее CISC. Даже если системе RISC приходится выполнять 4 или 5 команд вместо одной, которую выполняет CISC, RISC все равно выигрывает в скорости, так как RISC-команды выполняются в 10 раз быстрее.
Отсюда возникает закономерный вопрос: почему многие всё ещё используют CISC, когда есть RISC? Всё дело в совместимости. x86_64 всё ещё лидер в desktop-сегменте только по историческим причинам. Так как старые программы работают только на x86, то и новые desktop-системы должны быть x86(_64), чтобы все старые программы и игры могли работать на новой машине.
Для Open Source это по большей части не является проблемой, так как пользователь может найти в интернете версию программы под другую архитектуру. Сделать же версию проприетарной программы под другую архитектуру может только владелец исходного кода программы.

MISC
MISC (англ. Minimal Instruction Set Computer — «компьютер с минимальным набором команд»).

Ещё более простая архитектура, используемая в первую очередь для ещё большего уменьшения итоговой цены и энергопотребления процессора. Используется в IoT-сегменте и недорогих компьютерах, например, роутерах.
Для увеличения производительности во всех вышеперечисленных архитектурах может использоваться “спекулятивное исполнение команд”. Это выполнение команды до того, как станет известно, понадобится эта команда или нет.

VLIW
VLIW (англ. Very Long Instruction Word — «очень длинная машинная команда») — архитектура процессоров с несколькими вычислительными устройствами. Характеризуется тем, что одна инструкция процессора содержит несколько операций, которые должны выполняться параллельно.

По сути является архитектурой CISC со своим аналогом спекулятивного исполнения команд, только сама спекуляция выполняется во время компиляции, а не во время работы программы, из-за чего уязвимости Meltdown и Spectre невозможны для этих процессоров. Компиляторы для процессоров этой архитектуры сильно привязаны к конкретным процессорам. Например, в следующем поколении максимальная длина «очень длинной команды» может из условных 256 бит стать 512 бит, и тут приходится выбирать между увеличением производительности путём компиляции под новый процессор и обратной совместимостью со старым процессором. Опять же, Open Sourсe позволяет простой перекомпиляцией получить программу под конкретный процессор.
Примеры архитектуры: Intel Itanium, Эльбрус-3.

Устройство процессора

Intel ivy bridge-e-die.jpg

В состав процессора входят следующие устройства
  • Устройство управления (УУ) — управляет работой всех устройств компьютера по заданной программе. УУ извлекает очередную команду из регистра команд, определяет, что надо делать с данными, а затем задает последовательность действий выполнения поставленной задачи. (Функцию устройства управления можно сравнить с работой дирижера, управляющего оркестром. Своеобразной «партитурой» для УУ является программа.)
  • Арифметико-логическое устройство (АЛУ)- вычислительный инструмент процессора; это устройство выполняет арифметические и логические операции по командам программы.
  • Регистры процессорной памяти — это внутренняя память процессора. Каждый из регистров служит своего рода черновиком, используя который процессор выполняет расчеты и сохраняет промежуточные результаты. У каждого регистра есть определенное назначение. Предположим, что у процессора возникла необходимость сложить два числа. Для этого ему нужно считать из памяти первое слагаемое, затем — второе слагаемое, сложить их и, если необходимо, отправить результат снова в оперативную память. Стало быть, процессору необходимо где-то хранить первое и второе слагаемое, а затем и результат. Для этого служит внутренняя ячейка самого процессора, называемая сумматор, или аккумулятор. Кроме того, процессору необходимо знать, из какой ячейки оперативной памяти считывать очередную команду. Об этом ему сообщает содержимое его внутренней ячейки , называемой счетчиком команд. Сама команда после извлечения из оперативной памяти помещается в ячейку — регистр команд. Полученный после выполнения команды результат может быть переписан из регистра в ячейку ОЗУ.
Существует несколько типов регистров, отличающихся видом выполняемых операций. Некоторые важные регистры имеют свои названия, например
  • сумматор — регистр АЛУ, участвующий в выполнении каждой операции;
  • счетчик команд — регистр УУ, содержимое которого соответствует адресу очередной выполняемой команды; служит для автоматической выборки программы из последовательных ячеек памяти;
  • регистр команд — регистр УУ для хранения кода команды на период времени, необходимый для ее выполнения.

Все устройства процессора обмениваются между собой информацией с помощью внутренней шины данных. Современные процессоры имеют и другие части, но три перечисленные выше, вместе со связующим звеном — внутренней шиной данных — необходимый минимум.

Схема машинного цикла

Как пpавило, этот процесс разбивается на следующие этапы
  1. Из ячейки памяти, адрес которой хранится в счетчике команд, выбирается очередная команда; содержимое счетчика команд при этом увеличивается на длину команды
  2. Выбранная команда передается в устройство управления на регистр команд;
  3. Устройство управления расшифровывает адресное поле команды;
  4. По сигналам УУ операнды считываются из памяти и записываются в АЛУ на специальные регистры операндов;
  5. УУ расшифровывает код операции и выдает в АЛУ сигнал выполнить соответствующую операцию над данными;
  6. Результат операции либо остается в процессоре, либо отправляется в память, если в команде был указан адрес результата;
  7. Все предыдущие этапы повторяются до достижения команды «стоп».

Полезные ссылки

intel
AMD

Понравилась статья? Поделить с друзьями:
  • Таблетки от давления амлодипин инструкция по применению цена отзывы аналоги
  • Как связаться с руководством домклик
  • Стусло поворотное с ножовкой ермак инструкция
  • Микроманометр ммн 2400 инструкция по эксплуатации
  • Руководство кку ктз