Приветствую всех читателей на страницах сайта!
Наверное, не многие радиолюбители еще не слышали о LC тестере T4, а те кто обзавелся или собрал самостоятельно подобный прибор вряд ли назовут его бесполезным.
Интерпретаций данного тестера сегодня существует довольно большое множество – это и конструктор, и готовый модуль с питанием от кроны, и модули с литиевыми аккумуляторами, и эти же модели, но уже в корпусе из оргстекла/акрила.
Сегодня хочу поделиться информацией о еще одной версии LC-тестера – мультифункциональном тестере ТС-1 с цветным экраном, встроенным литий-ионным аккумулятором, приличным корпусом и парой дополнительных полезных функций.
Кому данная тема интересна, приглашаю под кат.
Сначала пара слов для тех, кто еще не знает для чего служат подобные приборы.
Как правило, большую часть радиокомпонентов можно проверить обычным мультиметром. Однако есть и такие, которые мультиметром не протестировать вовсе или удастся это сделать лишь частично. Например, полевые транзисторы MOSFET, J-FET. Кроме того, не все мультиметры могут измерять емкость конденсаторов, а те которые могут это делать, не могут измерять ESR – эквивалентное последовательное сопротивление и Vloss – напряжение утечки.
Не удастся так же мультиметром определить напряжение стабилизации стабилитронов при затертой или мелкой маркировке.
И вот в этих случаях очень может выручить многофункциональный тестер ТС-1, которым можно тестировать резисторы сопротивлением до 50 МОм, диоды, стабилитроны с напряжением стабилизации до 30 вольт, светодиоды, npn и pnp биполярные транзисторы, N и P канальные полевые транзисторы MOSFET и J-FET, IGBT биполярные транзисторы с изолированным затвором, тиристоры, симисторы, измерять индуктивность, емкость, ESR, Vloss конденсаторов, а так же напряжение литиевых аккумуляторов до 4,5 вольт. Тестер умеет дешифровать сигналы пультов дистанционного управления. Питается прибор от внутреннего литий-ионного аккумулятора и заряжается через microUSB разъем от любого источника напряжением не более 6 вольт. Информация о результатах теста выводится на цветной TFT дисплей размером 1,8 дюйма с разрешением 160*128 пикселей.
Поставляется тестер в небольшой коробке с цветным принтом и информацией о возможностях тестера.
Внутри лежит интуитивно понятная инструкция на английском языке и антистатический пакет.
Внутри антистатического пакета спрятан тестер, короткий шнур для зарядки и … еще два антистатических пакета).
В полностью распакованном виде содержимое пакетов выглядит так:
Большой плюс, что положили в комплект щупы – не нужно допаивать провода к радиодеталям с короткими ножками или аккумуляторам, чтобы вставить их в разъем. Наконечники щупов подпружинены и хорошо зажимают выводы радиокомпонентов.
Но есть и претензии к щупам – они могли бы быть и одного цвета с проводами. Позже, когда проводил тесты, испытывал дискомфорт от этого. Оно может и не имеет значения – тестеру все равно какой контакт детали, в какой контакт колодки вставлен. Он сам разберется, но все же когда внимание сосредоточено на приборе/щупах/измерениях, то лишний отвлекающий фактор не к месту (а может и придираюсь).
Конденсатор на 10 мкф*25 вольт и красный светодиод положили в качестве бонуса, а вызвавшие сначала недоумение неразрезанные контакты, позже пригодились для калибровки тестера – да, есть тут и такая задекларированная в инструкции процедура.
С самого начала прибор вызвал интерес тем, что у него приличный корпус, ничего делать как в случае с бескорпусным вариантом LC тестера Т4 не нужно. В руке лежит удобно.
Излишество или хороший тон, но экран закрыт транспортировочной пленкой.
К номерным контактам разъема подключаются любые контакты радиодеталей, кроме стабилитронов. Для стабилитронов предусмотрены контакты разъема КАА (катод, анод, анод).
В инструкции указано, что не следует одновременно в номерные контакты вставлять, например, транзистор, а в контакты для стабилитронов стабилитрон – будет проводиться тест только компонента в номерных контактах.
Рядом с разъемом расположено окно инфракрасного датчика для проверки и декодирования сигналов пультов ДУ.
Все управление прибором производится одной кнопкой, которая в инструкции обзывается многофункциональной. Под «много» имеется ввиду, краткое нажатие для активации прибора и начала теста, после установки компонента в разъем и длительное нажатие для принудительного выключения прибора. Как и в Т4 здесь не забыли про автоотключение после 25 секунд бездействия. Кому этого времени покажется много, тот может воспользоваться информацией из инструкции, вскрыть прибор и установить паяльником перемычку, задав нужный период до отключения от 10 до 25 секунд.
На задней стороне прибора находится разъем microUSB и светодиод. Во время зарядки он светится красным, а по ее окончании привычно зеленым цветом.
Дальняя и нижняя сторона корпуса
Размеры корпуса
Как и все приборы, содержащие аккумулятор, тестер перед использованием рекомендуется зарядить. Максимальный ток зарядки составляет 0,44 Ампера.
С описанием внешнего вида и характеристикам всё и можно переходить к тестированию радиокомпонентов.
Для включения тестера кратко нажимаем кнопку и видим следующее на экране:
Прибор пишет, что не обнаружил тестируемый компонент или компонент поврежден.
Выпрямительный диод 1N4007, диод Шоттки SR504, сдвоенный диод Шотки SBL2040CT.
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается. Во время теста светодиод начинает мерцать.
Стабилитроны на разное напряжение:
Транзисторы структуры npn: BC547C, МJE1309, КТ312Б, КТ315Б
MJE13003С с защитным диодом и составной транзистор КТ827А
Транзисторы структуры pnp: МП40А, ВС557В, S8550
Полевые транзисторы: APM3055L – N-канальный MOSFET и LD1010D – N-канальный JFET с PN диодом:
Из имеющихся у меня под рукой компонентов тестер не совсем точно отобразил N- канальный MOSFET К3742. Его он показал как IGBT:
P-канальный MOSFET BSS92
А вот IGBT транзистор G20N50C тестер отобразил как N канальный MOSFET, но тут есть оговорка: по одному даташиту он N-канальный MOSFET, а по другому N-канальный IGBT и обозначения немного разные.
Не смотря на «путаетесь в показаниях») нужно сказать, что тестер суть компонента определил – будь транзистор пробитым или оборванным, мы бы увидели совсем иную картинку.
Последние две фотки снимались по случаю на телефон на радиорынке так, как в наличии P-канальных MOSFET и IGBT в наличии не было. Не обессудьте.
Следующими в очереди были симисторы MAC97A8 и BT134600E
В инструкции к прибору говорится, что тестер способен тестировать тиристоры и симисторы с током управляющего электрода до 6 mA, но у MAC97A8 этот параметр равен 7 mA, а у BT134600E — 25 mA. Выходит или в инструкции ошибка или прибор лучше). С конденсаторами такая же история – до 100 mF. Микро или мили? Учитывая, что тестер измеряет конденсаторы емкостью больше 100 мкФ, то тогда в инструкции имеются в виду миллиФарады, а это 100 000 микроФарад. Но вернемся к тестированию.
Измерение индуктивности:
Тестер умеет распознавать сигналы пультов дистанционного управления и декодировать их. Но касается это только пультов работающих в IR формате Hitachi. Из таковых оказался только ПДУ от ДВД плейера BBK. При нажатии кнопок на пульте картинка на дисплее тестера менялась.
В случае с остальными пультами на зеленом поле экрана мигала красная крупная точка, просто сигнализируя о том, что пульт работает и что то излучает.
Насколько полезная данная функция судить не берусь, но пусть лучше будет.
Сопротивление тестер измеряет в диапазоне 0,01 Ом — 50 Мом. Не всё нашлось в закромах, но общий вывод – справляется. Погрешность есть, как, впрочем, и у всякого измерительного прибора. В инструкции, кстати, она не указана.
На резисторах провел сравнительные замеры тремя приборами:
Как говорится, придраться к каждому можно. И в то же время каждый не далеко ушел от соседа. Где то больше, где то меньше, но все равно достаточно точно.
Проверку конденсаторов провел по той же схеме. Расхождения между приборами присутствуют, но иное представить трудно.
Опять же сравнительные замеры тремя приборами:
Примечательный факт — конденсаторы были разные — керамика, лавсан и другие, но с МБМ не смог справиться ни один из приборов. При этом, обозреваемый ТС-1 показал лишь на 35 % больше от номинала. Два других дали погрешность почти на +80 %).
Как уже говорил, важным параметром электролитических конденсаторов является ESR – эквивалентное последовательное сопротивление. Его возрастание приводит к некорректной работе схем. Не лишним будет знать и Vloss конденсатора – напряжение утечки, измеряющееся в процентах и показывающее, сколько процентов заряда теряет конденсатор через одну секунду после прекращения процесса заряда. При его значении в несколько процентов конденсатор лучше отложить в сторону.
Измеренные величины ESR сравниваются с табличными, обязательно следует учитывать напряжение, на которое рассчитан конденсатор.
Сначала фото приличных конденсаторов. Номиналы на фото написаны желтым цветом.
Пара сравнительных фото с мультиметром.
Тот же конденсатор 47 мкф*160 вольт и 2200 мкф*25 вольт.
Результаты сравнения показаний емкости трех приборов такие же как и в случае с резисторами и неэлектролитическими конденсаторами – плюс/минус, но все рядом.
В завершении конденсаторной главы несколько фото негодных конденсаторов.
4,7*25 В, 100 мкф*10 В, 10 мкф*50 В:
4,7 мкф*400 В, 22 мкф* 250 В, 470 мкф * 25 В
Следуя инструкции и по опыту угробленного Т4, скажу что перед проверкой конденсаторов их следует обязательно разрядить.
Кроме всего вышеперечисленного ТС-1 позволяет так же проверять напряжение элементов питания с напряжением до 4,5 Вольт.
Последним пунктом из функционала тестера остается калибровка. Тут, как в случае с Т4, не требуется конденсатор. Здесь для калибровки достаточно вставить в колодку те самые неразрезанные контакты из комплекта, что при распаковке удивили своим наличием в комплекте, и нажать кнопку.
После этого на экране появится сообщение о самотестировании и ниже шкала с процентами его выполнения.
На уровне 22 процентов тестер попросит извлечь замкнутые контакты и тест продолжится.
На этом повествование о богатом функционале маленького прибора можно заканчивать и переходить ко всем любимой разборке и тесту аккумулятора.
Разбирается прибор просто, для этого нужно лишь открутить четыре самореза. Аккумулятор приклеен на двухсторонний прозрачный скотч. Теперь ищу такой же – еле оторвал аккумулятор, пришлось поддевать пластикой картой. Если кто знает, прошу дать ссылку. Приклеено было так хорошо, что при отрывании аккумулятора обертка слегка поменяла рельеф, но с самим аккумулятором все в порядке.
Мозговым центром тестера является микроконтроллер Atmega 324PA, надпись на втором чипе старательно затерта.
Обратите внимание на область платы в красном прямоугольнике – замкнув контакты на массу можно изменить время до отключения тестера. С завода перемычек нет и установлено время 25 секунд. Добавив перемычки можно установить 10,15,20 секунд.
С обратной стороны платы все так же аккуратно и без следов флюса, а плата экрана припаяна через пины (надеюсь правильно назвал), что куда надежнее, чем шлейф, как в Т4.
Тест аккумулятора провел из спортивного интереса аж тремя способами: зарядка-разрядка iMax B6 (током 0,2 А), зарядка-разрядка EBD-USB (током 0, 18 А) и зарядка через USB-тестер. И на удивление все три теста дали практически одинаковый результат – аккумулятором прибор укомплектован качественным.
Под финал изучения тестера под руку попались динисторы DB3. С ними, не смотря на напряжение пробоя по даташиту от 28 до 32 вольт, тестер тоже как-то справился.
Подводя черту, по традиции и правилам сайта отмечу минусы и плюсы.
Минусы (или пожелания): прибору следует немного добавить точности измерений, вопросы по определению некоторых MOSFET и IGBT транзисторов и хотелось бы щупы и провода одного цвета.
Плюсы: многофункциональность, компактность и законченный вид благодаря корпусу, внутренний качественный аккумулятор, щупы, простая калибровка, цветной дисплей.
P.S. Из имеющихся теперь тестеров T4 и ТС-1 предпочту пользоваться обозреваемым.
Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
Универсальный тестер радиокомпонентов
Измеритель ESR R/C/L и тестер полупроводников
Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.
Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).
С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.
Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR – MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.
Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 – прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и «рассыпуха» – планарные конденсаторы и резисторы.
Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.
На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.
Итак, каковы же возможности данного тестера?
Замер ёмкости и параметров электролитического конденсатора.
Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.
Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.
На экране результат: ёмкость – 1004 мкФ (1004 μF); ЭПС – 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.
Проверка танталового электролитического конденсатора 22 мкФ * 35в.
Результат: ёмкость – 24,4 мкФ; ЭПС – 0,2 Ом., Vloss = 0,4%
Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.
Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.
Таинственный параметр Vloss.
При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.
Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.
Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.
Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.
Проверка полевых J-FET и MOSFET транзисторов.
Теперь давайте протестируем широко известный MOSFET транзистор IRFZ44N. Вставляем его в панель так, чтобы его выводы были подключены к клеммам 1, 2, 3.
Никаких правил подключения соблюдать не надо, как уже говорилось, прибор сам определить цоколёвку детали и выдаст результат на дисплей.
На дисплее, кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 — 4 вольт.
Более подробно об основных параметрах MOSFET-транзисторов я уже писал здесь.
Также советую заглянуть на страничку, где рассказывается о разновидностях полевых транзисторов и их обозначении на схеме. Это поможет понять, что же вам показывает прибор.
Проверка биполярных транзисторов.
В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).
Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.
Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.
Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.
Проверка диодов универсальным тестером.
Образец для испытаний – диод 1N4007.
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF – Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.
Для данного диода 1N4007: VF = 677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.
Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).
Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!
Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.
Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.
Проверка сдвоенного диода MBR20100CT.
Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.
Проверка резисторов.
Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. Вот так прибор определяет подстроечный резистор типа 3296 на 1 кОм. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов, что не удивительно.
Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома. Вот пример. Резистор сопротивлением 0,1 Ома (R10).
Замер индуктивности катушек и дросселей.
На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае.
На дисплее результат измерения параметров дросселя на 330 мкГ (0,33 миллиГенри).
Кроме индуктивности дросселя (0,3 мГ) тестер определил его сопротивление постоянному току – 1 Ом (1,0Ω).
Маломощные симисторы данный тестер проверяет без проблем. Я, например, проверял им MCR22-8.
А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись «? No, unknown or damaged part», что в вольном переводе означает «Отсутствует, неизвестная или повреждённая деталь».
Кроме всего прочего, универсальный тестер может замерять напряжение батареек и аккумуляторов.
Я был обрадован ещё и тем, что данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.
Покажу на примере. Вот внутреннее устройство оптопары TLP627.
Излучающий диод подключается к выводам 1 и 2. Подключим их к клеммам прибора и посмотрим, что он нам покажет.
Как видим, тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V. Далее подключаем к тестеру 3 и 4 выводы оптопары.
На этот раз тестер определил, что к нему подключили обычный диод. В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер «видит» только его.
Так мы проверили исправность оптопары TLP627. Похожим образом мне удалось проверить и маломощное твёрдотельное реле типа К293КП17Р.
Теперь расскажу о том, какие детали этим тестером НЕ проверить.
-
Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;
-
Стабилитроны. Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»;
-
Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные. Думаю, пояснения излишни;
-
Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32V, как у распространённого DB3;
-
Ионисторы прибор также не распознаёт. Видимо из-за большого времени заряда;
-
Варисторы определяет как конденсаторы;
-
Однонаправленные супрессоры определяет как диоды.
Универсальный тестер не останется без дела у любого радиолюбителя, а радиомеханикам сэкономит кучу времени и денег.
Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Такое бывало. Думаю, не надо объяснять, что это свидетельствует о негодности радиодетали.
Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
-
Как проверить транзистор цифровым мультиметром?
-
Как перевести микрофарады в пикофарады, а омы в килоомы?
-
Методика проверки полупроводникового диода.
-
Как проверить конденсатор мультиметром?
GM328A – Многофункциональный прибор для проверки и автоматического обнаружения транзисторов типа NPN и PNP, полевых транзисторов, диодов, спаренных диодов, светодиодов, стабилитронов, тиристоров, дросселей, сопротивлений, конденсаторов с автоматическим определением цоколевки выводов всех компонентов.
Купить тестер GM328A
Инструкция на русском
Характеристики:
Микроконтроллер: Atmega328;
Напряжение питания: 6 – 12 В постоянного тока;
Рабочий ток: 30 мА;
Дисплей: диагональ 1,8 дюйма, разрешение 160 х 128 пикселей, глубина цвета 16 бит;
Диапазон измерения сопротивления: 0,01 Ом – 50 МОм;
Диапазон измерения емкость: 25 пФ – 100 мкФ;
Диапазон измерения индуктивности: 0,01 мГн – 20 Гн;
Диапазон измерения частоты: 1 Гц – 1 МГц;
Диапазон измерения напряжения (постоянного): 0,01 В – 50 В;
Генератор прямоугольных импульсов с частотой: 1 Гц – 2000000 Гц;
10-битный ШИМ: значением 5 В с модуляцией от 0 до 99%;
Определяет: ESR, RLC, распиновку тиристоров, симисторов;
Определяет параметры диодов: падение напряжения, ёмкость перехода, распиновку;
Определяет параметры транзисторов: тип (NPN, PNP, N-P channel MOSFET), тиристоры, JFET, распиновку и отображает наличие защитного диода;
Габариты: 78 x 68 x 28 мм;
Вес: 65 г;
Схема GM328A
GM328 можно использовать в качестве генератора прямоугольных ШИМ-сигналов, с возможностью изменять скважность от 1 до 99%. Транзистор тестер может измерять частоту от 1 до 4000000 Гц, проверять у конденсаторов емкость, ESR – эквивалентное последовательное сопротивление и Vloss – добротность.
Работать в режиме генератора импульсов до 2 мГц.
А также этот универсальный прибор имеет: Русифицированный интерфейс. Цветной ЖК TFT дисплей. Управление в меню прибора производится поворотным энкодером с функцией нажатия. Микросхема контроллера ATmega328P установлена на панельку и имеет удобный для замены и ремонта корпус DIP.
В режиме “Транзистор тест” проверяет переходы транзисторов типа NPN и PNP, автоматически определяет расположение выводов транзисторов, коэффициент усиления по току, пороговое напряжение открытия, утечку тока. Проверяет диоды, емкость перехода, напряжение падения и обратный ток. Есть поддержка измерения делителя из двух резисторов.
Для активации режима генератора импульсов нажимает и удерживаем энкодер две три секунды, после чего переходим на следующий разряд ввода частоты.
Питание прибора можно осуществлять от любого внешнего источника 7 В – 12 В, через стандартный разъем питания 5,5 мм. Если tester не используется в течение 1 минуты, то он автоматически переходит в сон, ток спящего режима всего 20 нА.
При первом включении, следует выбрать “режим самотеста”, соединить перемычками из медного провода контакты 1-2-3 и приготовить керамический конденсатор 0,1 мкФ, далее тестер на дисплее подскажет Вам следующие шаги. Во время калибровки, не желательно дотрагиваться до платы, так как Вы можете внести погрешность в измерения.
Внимание!!! Тестер легко спалить, если попытаться измерять емкость электролита, предварительно не разрядив его.
Во время ремонта различной бытовой аппаратуры приходилось сталкиваться с неисправностями, связанными с изменением параметров электролитических конденсаторов. Простым мультиметром или стрелочным прибором можно выявить лишь оборванные или замкнутые накоротко конденсаторы. Приставка к мультиметру, которую также собирал, определяет только их ESR. Поэтому заказал в Китае тестер полупроводников+LC+ESR метр. Хотя при хороших знаниях можно собрать похожий прибор самому.
Порадовали весьма скромные размеры устройства 72*62,5 мм. Высота обуславливается высотой «Кроны» – 17,5 мм. При включении на индикаторе отображается информация о состоянии батареи питания и отсутствии радиокомпонента в колодке. Далее многие фото в высоком разрешении – можете кликнуть на них, чтоб рассмотреть детали получше.
Надо сказать, что прибор весьма требователен к питанию и кушает его не мало. Мой экземпляр при напряжении в районе 7,5 вольт ненадолго уходил в себя и отказывался производить измерения. Заменив крону сразу почувствовал разницу между радиолюбительством до и после)). В дальнейшем планирую избавиться от кроны вовсе. Хочу соорудить узел питания на основе повышающего преобразователя, литиевого аккумулятора и контроллера его зарядки. Экран имеет разрешение 128*64. Устройство позволяет проводить измерение как выводных радиокомпонентов так и SMD, для чего между колодкой для выводных деталей и кнопкой имеется специальная площадка. Построен тестер на основе микроконтроллера Mega 328.
Время тестирования радиокомпонентов в районе 2 секунд, лишь для емкостей большОго номинала – до одной минуты. Собственно прибора была связана со случаями изменения параметров электролитических конденсаторов в результате чего схемы, где они были установлены вели себя неадекватно. В случае установки в колодку тестера электролитического конденсатора прибор одновременно измеряется его емкость и реактивное сопротивление конденсаторов – ESR, а так же Vloss – напряжение утечки (в процентах). Полученные результаты сравниваются с табличными.
Таблица ЭПС конденсаторов
При превышении результатов измерения больше чем на 10% от табличного, электролитический конденсатор отправляю в ведро.
Конденсатор 330*25 вольт
Конденсатор 10 мкф*50 вольт
Конденсатор 33 мкф*50 вольт
Конденсатор 47 мкф*160 вольт. Стоял в «холодной» части блока питания телевизора и грелся. Отправляется в ведро
Конденсатор 220 мкф*35 вольт так же отправляется на помойку
Для неполярных – значение ESR всегда будет более 10 Ом. Диапазон измерения конденсаторов от 25 пф до 100000 мкф с шагом 1 пф.
Конденсатор 0,1 мкф
Конденсатор 3900 из энергосберегающей лампы неожиданно выдал 991 пикофарад. После его замены лампа возобновила работу
Конденсатор 68 нанофарад
Металлобумажный конденсатор МБМ 0,1 мкф совершенно не использовавшийся, но за годы хранения с далеко ушедшими параметрами(((.
Значение Vloss (напряжение утечки сразу после прекращения заряда конденсатора) в несколько процентов свидетельствует о неисправности конденсатора. Для себя определил уровень годности электролитического конденсатора по параметру напряжения утечки в 3%.
Перед тестированием все конденсаторы в обязательном порядке разряжал – в противном случае велика вероятность выхода тестера из строя.
Сопротивления измеряются в диапазоне от 0,5 Ома до 50 МОм с шагом 0,1 Ома. Катушки индуктивности тестируются в диапазоне 0,01 мН – 20Н, с отображением их сопротивления.
Резистор 1,3 кОм
Резистор 200 кОм
Очень полезной функцией является определение типа проводимости транзисторов (NPN – PNP, MOSFET) и цоколевки выводов, что позволяет не искать даташит для определения назначения выводов транзистора. В чем польза функции? Иногда один и тот же транзистор, например MJE13001-13005, от разных производителей встречаются с разным расположением Базы и Эмиттера. У биполярных транзисторов измеряется коэффициент усиления hFE и напряжение смещения Б-Э Uf.
КТ805БМ
MJE13001
Вот так тестер определил составной транзистор MJE13003 с шунтирующим диодом во время ремонта энергосберегающей лампы.
Пробитый транзистор строчной развертки D2499
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf и его ёмкость C.
Выпрямительный диод 1N4007
Импульсный диод FR102
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается. При этом светодиод начинает мерцать.
Проверка сдвоенных диодов определяет падение напряжения на каждом диоде.
Маломощные тиристоры определяются без значений параметров.
тиристор MAC97
Вывод и впечатления от прибора
К небольшим минусам прибора должен отнести:
- проверка стабилитронов с напряжением стабилизации только до 4,5 В;
- не защищенный шлейф ЖК индикатора (корпус мастерить обязательно).
Несмотря на имеющиеся минусы, плюсов у прибора гораздо больше и не одному радиолюбителю, а так же профессионально занятому в сфере электроники человеку, прибор способен значительно облегчить жизнь. Специально для Элво.ру – Кондратьев Николай, Г. Донецк.
- GM328 обзор
- Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей
- Резисторы – самый распространенный вид радиокомпонентов
- Транзисторы
- Конденсаторы
- Дроссели и катушки индуктивности
- Примеры измерений радиодеталей
- Режимы работы M328
- Дополнительные режимы сборки GM328
- Возможности универсального тестера
- Фирменный или «китаец», готовый или конструктор
- Состав конструктора GM328
- Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметров
- Транзистор тестер Маркуса с AVR микроконтроллером
- LC метры
- LCR+ESR метры
- Как итог, несколько рекомендаций перед выбором RLC измерителя:
- Калибровка
- Пример калибровки универсального тестера GM328
- Проверка деталей универсальным тестером
- Проверка резисторов, ёмкостей
- Как проверить диоды и стабилитроны
- Как измерить транзисторы
- Сборка GM328
- Как работать с универсальным тестером
- Установка радиоэлемента и его проверка
Вот что он может определять и измерять характеристики:
- Транзисторы NPN и PNP
- Мосфет
- Диоды
- ВЕЛ
- Двойные диоды
- Тиристоры
- Стабилитроны
- Резисторы (может быть, два одновременно)
- Конденсаторы
- Напряжение постоянного тока до 50 вольт
Впечатляет, не правда ли? Показывает ESR и емкость затвора для каждого контролируемого элемента. Кроме того, его можно использовать в качестве генератора импульсов от 1 Гц до 2 МГц, а также для измерения частоты в том же диапазоне. И это только основные особенности. Отличный цветной графический дисплей, резкий и яркий. В базовой прошивке есть возможность настраивать цвета для каждого элемента интерфейса.
Еще хочу отметить возможность перепрошивки этого тестера, ведь нам всегда хочется что-то улучшить или переделать). Благо для этой модели в интернете очень много прошивок, в том числе и русских. Обязательно в ближайшее время напишу подробный мануал по прошивке.
Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей
Резисторы – самый распространенный вид радиокомпонентов
Проволочные резисторы, различающиеся номинальной мощностью
Если нет проблем с общими номиналами, измерение резисторов с низким сопротивлением может усложнить задачу. Обычный мультиметр часто может измерять нормальное сопротивление порядка 1-2 Ом и выше, если ниже, то начинает сильно влиять сопротивление проводов, щупов и низкое разрешение. Даже достаточно точный UNI-T UT61E имеет разрешение измерения в этом режиме всего 10 мОм, в то время как даже недорогой измеритель LCR имеет минимальное разрешение 0,1 мОм. |
Цифровой мультиметр UNI-T UT61E высокая точность с возможностью подключения к ПК для удаления логов |
Соответственно, если с помощью мультиметра можно относительно точно измерить резисторы сопротивлением 0,05-0,1 Ом, то при замере 10 мОм фактически ничего не измерить, для сравнения ниже — измерение двух резисторов с номиналом значение 1 и 2,2 мОм.
Разница показаний мультиметра и тестера RLC при измерении резисторов низкого сопротивления
Измерение низкого сопротивления часто требуется при проверке, подборе размеров или производстве шунтов для измерения тока. Альтернативный вариант измерения падения напряжения, но нужен регулируемый блок питания, амперметр, вольтметр.
Токовый шунт представляет собой резистор с низким сопротивлением, который является резистором с низким сопротивлением
Возможность измерения низкого сопротивления также полезна для обнаружения таких проблем, как ошибки маркировки, особенно резисторов с низким сопротивлением.
Слева резистор обозначен как 0,1 Ом, справа как 0,22 Ом, но на самом деле они имеют почти такое же сопротивление. Такие ошибки иногда могут стоить очень дорого.
Перед установкой или пайкой резистора в цепи проверьте его сопротивление. Убедитесь, что номинальные и фактические значения резистора совпадают
Транзисторы
Измерение малых сопротивлений поможет оценить оригинальность полевых транзисторов. В настоящее время на рынке все больше и больше появляется поддельных и перемаркированных транзисторов. Хотя простое измерение сопротивления не дает полной информации, оно позволяет быстро определить, что перед вами.
Для теста, помимо прибора, достаточно батарейки на 9 вольт. Часто данные в таблицах данных приводятся к напряжению затвора 10 вольт, но в данном случае это несущественно. Кроме того, правильно измерять сопротивление сток-исток по току, оно обычно указывается в документации, но для этого нужен хотя бы лабораторный блок питания.
Для проверки транзистора: подключаем тестовые щупы к выводам стока и истока (обычно центральному и правому), на крайние выводы подаем 9 вольт. Постоянного приложения напряжения не требуется, достаточно зарядить конденсатор затвора, но нужно соблюдать осторожность, случайно не подключать аккумулятор к щупам тестера. Вы также можете сначала «загрузить» транзистор, а уже потом подключать щупы.
Проверка полевого MOSFET-транзистора тестером
Конденсаторы
Конденсаторы используются несколько реже, но имеют свои особенности. Например, в отличие от резисторов, они гораздо более подвержены старению, особенно если речь идет об электролитических конденсаторах, установленных в импульсных источниках питания, преобразователях материнских плат и т.д.
Пленочные, керамические, электролитические конденсаторы
ESR конденсаторов имеет особое значение. Когда конденсатор высыхает почти без потери емкости, его внутреннее сопротивление значительно увеличивается.
Обычным мультиметром это не диагностируется, можно все поменять, но это не всегда удобно, часто сложно или дорого. Кроме того, измерители RLC часто позволяют проводить измерения без распайки компонента, хотя, конечно, это зависит от схемы подключения.
- Большинство мультиметров измеряют конденсатор как идеальный, т.е.без учета его особенностей, иногда этого достаточно, иногда нет.
- Самые сложные устройства могут отделить конденсатор от его внутреннего сопротивления, а также отдельно измерить эти параметры.
- Эквивалентная схема конденсатора выглядит намного сложнее — все эти параметры можно измерить, но это совсем другой класс устройств, который обычным радиолюбителям обычно не требуется.
Эквивалентная последовательная цепь, где R — электрическое сопротивление изоляции конденсатора, отвечающее за ток утечки, и эквивалентное последовательное сопротивление; L — эквивалентная последовательная индуктивность; C — емкость конденсатора
Например, сравнение двух конденсаторов, дешевых и фирменных китайских. Несмотря на точность, обычный мультиметр считает, что они почти одинаковы, показывая лишь небольшую разницу в емкости. Но если подключить конденсаторы к измерителю LCR, то можно увидеть, что разница их внутреннего сопротивления почти в 5 раз! Если при коммутации блоков питания планируется использовать конденсаторы, именно эта разница в сопротивлении будет влиять на нагрев и, как следствие, на срок службы и характеристики блока питания. Конденсаторы с высоким внутренним сопротивлением не могут эффективно гасить пики.
Измерение емкости и ESR электролитических конденсаторов
Дроссели и катушки индуктивности
Реакторы, трансформаторы и в целом обмоточные блоки, в отличие от конденсаторов и резисторов, еще сложнее контролировать, и, как правило, мультиметр может измерить индуктивность.
Основной характеристикой сужения является индуктивность, то есть коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке
Измеритель импеданса облегчает изготовление узлов намотки, а также поиск коротких замыканий между витками. Сравнивая с исправным компонентом или известным значением, можно понять, что трансформатор или индуктивность неисправны, поскольку его индуктивность сильно изменится.
Электрический контроль индукторов включает обнаружение короткого замыкания витков (короткого замыкания между витками обмотки). Если в студийной обмотке есть двухвитковая цепь, то ее индуктивность резко упадет.
Как правило, существуют индикаторы для поиска закороченных кривых, но измеритель импеданса также обнаруживает эту проблему. Например, слева рабочий трансформатор, справа он такой же, но с закороченным витком. Видно, что индуктивность обмотки стала значительно меньше, и виток также повлиял на результат измерения активного сопротивления обмотки.
Сравнение индуктивности рабочего трансформатора и трансформатора с замкнутым контуром
Примеры измерений радиодеталей
использовать измеритель радиоэлементов очень просто. Вам необходимо установить деталь и включить устройство. Он проверит блок питания, если он в норме, начнет проверять деталь, установленную в разъемах. По результатам тестирования будет выведено сообщение с указанием типа детали и ее параметров.
Фирменное устройство
Чтобы было понятнее, разберем работу популярных клонов M328 и GM328. Разница между ними заключается в наборе возможных функций (у GM328 их больше). Любое устройство включается коротким нажатием на ручку. Нажал, держал 1-2 секунды и отпустил. Устройство выключается, либо выбрав соответствующую строку в главном меню (Выключить), либо удерживая ручку нажатой в течение 10 секунд.
Режимы работы M328
После включения прибора можно просмотреть все режимы работы. В GM328 переключение в меню осуществляется нажатием ручки (ручки переключения передач). Нажать и удерживать 3-7 секунд (разные сборки по разному). После отпускания ручки появляется меню. Обычно он состоит из следующих пунктов:
- Транзистор — основной режим работы устройства, при котором проверяются все радиоэлементы, за исключением конденсаторов.
- C + ESR @ TP1: 3 — режим измерения емкости конденсаторов и параметров ESR.
- Контрастность: отрегулируйте яркость экрана, отрегулируйте контрастность.
- Частота — измерение частоты переменного напряжения.
- f-Генератор: работает как генератор прямоугольных сигналов.
После включения устройства перейдите в главное меню. Там вы можете выбрать режим его работы
- 10-битный ШИМ: генерирует прямоугольные импульсы, работает как генератор сигналов ШИМ.
- поворотный энкодер — имитатор работы энкодера.
- Самотестирование — калибровка.
- Показать данные — просмотреть информацию в памяти (последние измерения).
- Выключить питание — выключить устройство.
Активный режим отмечается универсальным тестером радиокомпонентов M328 галочкой перед строкой с названием элемента. Возможно даже выделение или выделение. Перемещение по меню — поворотом ручки ручки. Переключение / активация выбранного режима — короткое нажатие на ручку. Не переусердствуйте, иначе устройство перезагрузится.
Обычно его оставляют в транзисторном режиме. Этот режим запускается автоматически при включении устройства. В нем все можно измерить. Во многих моделях также конденсаторы. И лишь некоторые требуют перехода в специальный режим.
Дополнительные режимы сборки GM328
Вариант монтажа универсального радиоэлементного счетчика GM328 имеет больше возможностей. Он имеет специализированные режимы для тестирования резисторов, конденсаторов, декодеров и энкодеров. Он также может работать как вольтметр. Еще 10 добавляются к перечисленным выше пунктам, которые перечислены ниже.
- RL — индуктивность.
- C. Емкость.
- DS18B20. Расшифровка показаний датчика температуры.
- C (мФ) — коррекция (большие конденсаторы).
- IR_Decoder. Декодер сигнала ИК-протокола.
-
Проверка состояния питания при каждом включении
- IR_Encoder. Передача сигнала ИК-протокола.
- DHT11. Расшифровка датчиков температуры и влажности.
- Вольтметр — Вольтметр.
- FrontColor — Цвет текста.
- Фоновый цвет. Фоновый цвет.
Нужны ли эти специальные режимы? Если вы профессиональный техник, то да. Для домашнего использования они не нужны. Все, что вам нужно, — это более простая сборка.
Возможности универсального тестера
Это устройство называется тестером транзисторов, так как это одна из наиболее востребованных функций. Но это только одна строчка из списка возможностей. Также можно встретить название Markus tester, универсальный или многофункциональный тестер, измеритель радиокомпонентов, мультитестер, ESR-тестер и многие другие более-менее похожие варианты. А все потому, что он много умеет и каждый их называет в соответствии с теми функциями, которые для него важны. Вот примерный список возможностей:
- Проверьте емкость конденсатора любого типа. Кроме того, он также устанавливает дополнительные параметры — ESR — сопротивление конденсатора и Vloss — падение напряжения, которое отображается в процентах. Фактически последний параметр отражает степень «износа» конденсатора (в частности, высыхания электролита). Чем больше число, тем хуже.
Вот как он выводит результаты измерений / тестов транзисторов
- Проверить транзисторы плавно, определить распиновку. Описывает, к какому выводу подключено основание катод-анод. Может быть указано значение порогового напряжения открытия затвора.
- Проверить исправность светодиодов, диодов, триодов, оптронов. Определите усиление, распиновку.
- Его можно использовать как генератор заданной частоты.
- Некоторые позволяют измерять частоту, временные параметры синусоидального напряжения, параметры прямоугольных импульсов.
- Они могут управлять датчиками температуры (для теплого пола — очень полезный, но редкий вариант).
- Есть модификации с более редкими характеристиками. Например, измеряют и проверяют два резистора в пучке, потенциометр (переменное сопротивление) и т.д. В общем, необходимый аппарат. А работа довольно простая. С ним легче обращаться, чем с электронным мультиметром.
Фирменный или «китаец», готовый или конструктор
Вы можете купить универсальный тестер радиокомпонентов от торговой марки или одного из китайских клонов. Разница в цене более чем ощутимая. Но надежность и точность фирменных устройств гарантированы, и, к счастью, с клонами.
Внешне между брендом и клоном есть солидная разница
На всем известном «Али» есть универсальные тестеры радиодеталей с кейсом и без. Без футляра, конечно, дешевле. Китайские счетчики в футляре стоят довольно недорого (около 20-30 долларов), а без футляра даже дешевле. Но многие страдают ненадежностью: твердо лгут. Приходится руководствоваться отзывами.
Комплект деталей — конструктор для сборки универсального измерителя параметров деталей
Готовые полупроводниковые тестеры хоть и стоят дешево на Али, но есть еще более дешевый вариант — так называемые сборщики. Производитель универсального счетчика — это печатная плата и набор деталей, которые необходимо установить / припаять самостоятельно. Изначально выберите набор функций. Под ним вам будет отправлена серия деталей. Некоторые сложные детали (микропроцессор) могут быть уже установлены. Остальное — конденсаторы, резисторы, конденсаторы и прочее нужно будет припаять самостоятельно .
Состав конструктора GM328
Схема тестера радиодеталей GM328 + TFT
Собственно, для сборки этого устройства нам понадобится как минимум простой паяльник на 25 Вт с тонким наконечником и припоем, при условии, что китайцы прислали вам полный комплект). Конечно, всегда приветствуется участие в процессе сборки третьей стороны, зажима для карт или единомышленников. Для сборки тестера радиодеталей GM328 даже не понадобятся прямые руки, процесс настолько прост, что с ним справится даже начинающий радиолюбитель, чему последний может только порадовать. Если вы стали обладателем полного комплекта для сборки нашего устройства, на вашем столе должны быть следующие предметы:
Состав комплекта для установки тестера радиодеталей GM328
Тестер транзисторов GM328 — Содержимое комплекта
- 1 шт. — плата с дорожками, частичными отверстиями и множеством SMD
- 1 шт. — цветной графический дисплей
- 1 шт. — DIP-панель для микроконтроллера
- 1 шт. — микроконтроллер Atmega328p 16-PU с базовой прошивкой
- 1 шт. — 8-футовый контактный разъем для подключения дисплея
- 1 шт. — 8-футовый контактный разъем для подключения дисплея
- 3 шт. — двухвинтовые клеммы
- 25 шт. — резисторы разной мощности
- 1 шт. — кварц
- 1 шт. — стабилитрон
- 3 шт. — транзистор
- 1 шт. — варистор
- 1 шт. — Светодиод
- 1 шт. — ЗИФ панель для подключения измеряемой радиодетали
- 2 шт. — электролиты
- 9 шт. — керамические конденсаторы
- 1 шт. — розетка
- 1 шт. — коннектор короны (не всегда)
- 1 шт. — кодировщик
К сожалению, наткнулся на комплект с порванной микросхемой VO5
Иногда случается)
Так что мне все же пришлось прибегнуть к помощи паяльной станции для пайки этой маленькой SMD-шки. И вот результат работы:
Мало прямых рук)
Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметров
Сравниваем несколько метров разной цены, оцениваем их достоинства и недостатки.
Транзистор тестер Маркуса с AVR микроконтроллером
Начнем, конечно, со знаменитого тестера транзисторов Маркуса. Он существует в различных версиях: в корпусе и без, со встроенным частотомером, с проверкой стабилитронов, кустарный или заводской. Иногда его ошибочно называют измерителем ESR — это не совсем правильно, поскольку изначально это был транзисторный измеритель, и измерение ESR — лишь одна из его функций, которая была добавлена намного позже. К тому же у устройства есть очень большое сообщество на всем известном сайте vrtp.ru, где можно узнать, как прошить тестер транзисторов. |
Тестер транзисторов TC1 |
Тестер транзисторов LCR-T4 |
Популярные тестеры транзисторов EZM Electronics MK-168 и M8
Возможно, для новичка это действительно выход — такой тестер способен измерять множество различных компонентов. Особенно удобно проверять транзисторы, например, для облегчения такой задачи, как поиск эмиттерно-коллекторной базы транзистора. Тестировать конденсаторы с резисторами тоже неплохо.
Тестирование компонентов на GM328
Но что еще более важно, этот тестер может измерять емкость и индуктивность и выполнять полное измерение. То есть, например, для индуктивности он показывает не только индуктивность, но и активное сопротивление обмотки, а для конденсаторов не только емкость, но и внутреннее сопротивление.
Конечно, есть и недостатки, из-за простой схемы и двухпроводного подключения компонента маловероятно, что он будет работать с низкими сопротивлениями.
Тестирование компонентов GM328 — продолжение
LC метры
Следующий шаг — устройства на ступеньку выше: измерители LCR. Они не умеют проверять параметры транзисторов, но измерят индуктивность или низкое сопротивление лучше, чем универсальный тестер. Типичный представитель — Juntek LC100-A.
В отличие от предыдущего устройства, микропрограмма ESR-тестера закрыта, поэтому вариант обновления недоступен.
LC-метр, измеритель емкости и индуктивности LC100-A
У таких счетчиков есть недостаток универсального устройства — двухпроводное подключение. Следовательно, на результат измерения может сильно повлиять качество контакта с компонентом и длина проводов. Калибровка ESR-тестера, конечно, решает проблему длины провода, но лучше использовать провода минимальной длины и большого сечения.
LCR+ESR метры
Для более опытных есть устройство, пусть и непрофессиональное, но определенно близкое им: это XJW01. Помимо стандартных измерений, он позволяет выполнять сложные, а также измерять добротность диэлектрических потерь. Тестер имеет четырехпроводное подключение.
XJW01 позволяет проводить измерения на трех частотах: 100 Гц, 1 кГц и 7,8 кГц. XJW01 продается как монтажный комплект или как устройство в сборе.
Q-метр XJW01 для измерения добротности, коэффициента потерь
Тестер может работать как в автоматическом режиме выбора измеряемой величины, так и в ручном режиме. Лучше использовать ручной режим, так как автоматика иногда неправильно определяет тип компонента.
XJW01 используется для тестирования любого пассивного компонента
Наличие четырехпроводного подключения сразу ставит XJW01 на голову выше многих других любительских устройств: такое подключение позволяет разделить цепи генератора тока и измерительной части, благодаря чему длина проводов и сопротивление контакта перестают повлиять на результаты измерения.
Этот тип подключения используется в профессиональных устройствах: даже если компонент подключается непосредственно к клеммам устройства, также используется специальная контактная группа, состоящая из четырех контактов.
Параметры иммитанса радиодеталей HIOKI
Зажимы, пинцет или комплекты удаленных контактов используются для подключения радиокомпонентов, и, поскольку они также используют разъемы BNC для подключения, даже фирменные устройства совместимы с XJW01, показанным выше.
Испытательное устройство и 4-проводный испытательный щуп
Фактически то же самое и с фирменными, но относительно недорогими счетчиками LCR от UNI-T и Hantek. Они также имеют четырехпроводное соединение, измерения емкости, индуктивности и сопротивления, включая ESR и сложные измерения.
Особо выделяется новая модель измерителя Hantek 1832C, с помощью которого можно проводить измерения в семи частотных вариантах с верхним пределом 40 кГц. Основная погрешность до 0,3%, есть автоматический режим измерения, сложные режимы измерения.
В этой серии есть более старая модель — Hantek 1833C, которая имеет расширенный частотный диапазон, но стоит дорого.
Hantek 1832C имеет большой экран, на котором одновременно отображаются все результаты тестов. Подключение тестируемого компонента осуществляется двумя и четырьмя проводами (тремя и пятью с учетом контакта защиты).
Размах тестового сигнала составляет 0,6 вольт, что дает возможность измерять многие пассивные радиокомпоненты без отпайки с платы.
Заявленные диапазоны измеряемых параметров:
- Индуктивность — до 20 Гн;
- Емкость: до 20000 мкФ;
- Сопротивление — до 20 МОм;
Портативный измеритель RLC Hantek 1832C с расширенными функциями современного устройства позволяет точно, быстро и удобно измерять параметры компонентов
При этом современные устройства часто могут проводить измерения на частотах до 100 кГц (например, Hantek 1833C), что позволяет тестировать компоненты на более высоком уровне. Это особенно помогает при выборе конденсаторов для работы в импульсных источниках питания, рабочая частота которых сопоставима.
Но вы должны быть осторожны: многие измерители LCR часто имеют заявленный частотный диапазон до 100 кГц. Однако если внимательно прочитать инструкцию, станет понятно, что в режиме измерения на такой частоте максимальная измеряемая емкость существенно меньше.
Например, инструкция CEM DT9935 на частоте 10 кГц может измерять до 200 мкФ и 100 кГц, только до 2 мкФ
Как итог, несколько рекомендаций перед выбором RLC измерителя:
- Определите сферу своей деятельности, изучите технические возможности, параметры основных доступных счетчиков.
- Решите, сколько вы готовы потратить на устройство.
- Если вам нужно измерить небольшие значения емкости или индуктивности, проверьте, есть ли у выбранных инструментов функция выбора частоты, на которой выполняется измерение. Чем выше частота RLC, тем лучше будет работать тестер.
Калибровка
При первом запуске универсального тестера радиокомпонентов может потребоваться калибровка. Если есть инструкция, вам просто нужно выполнить все шаги по пунктам. Ничего сложного, действия простейшие, но без них никто не гарантирует точность измерений.
Сообщение о калибровке
Если инструкций нет, вы можете прочитать подсказки на экране. Сообщения обычно на английском, отображаются последовательно.
Пример калибровки универсального тестера GM328
Так как английский доступен не всем, приведем пример калибровки китайского «производителя» GM328. Это одна из самых популярных сборок, которая стоит около 12 долларов$.
Чтобы откалибровать универсальный тестер GM328, соедините все три контакта (области) для измерений с помощью перемычек. Удобно делать две перемычки П-образной формы, первая соединяет 1-2, вторая 2-3. Вы можете сделать одну в виде буквы S. Порядок действий следующий:
- Включите устройство. Включите GM328, коротко нажав на энкодер (некоторые называют его энкодером).
Перейти в режим самотестирования. Из-за этого:
- Как только после запуска на экране загорится какая-либо надпись, снова нажмите ручку и удерживайте ее 7-8 секунд. Ни больше ни меньше, так как в другой момент нажатия произойдет перезагрузка или устройство выключится.
- Если через 7-8 секунд отпустить ручку, на экране появится главное меню. Необходимо перейти из текущего режима в режим самотестирования — «Самотестирование». Текущий режим подсвечивается зеленым светом или галочкой (как на фото). Поверните ручку, чтобы изменить положение. Если нужно спуститься дальше — по часовой стрелке
Это главное меню. Для калибровки нужно перейти в режим самотестирования -Selftest
-
- Когда нужная линия будет отмечена, нажмите ручку, подтверждая выбор.
- После запуска тестовой программы появляется надпись Short Probers — проверка короткой (вы закроете все области измерения перемычками). Горит около минуты. В этот период необходимо установить перемычки.
Требования к установке перемычек и результат проверки устойчивости к короткому замыканию между зонами измерения
- После того, как перемычки будут вставлены, появится ряд цифр. Это сопротивление перемычек, установленных между контактами.
- После отображения этого сообщения отображается Остров Проберса. Это означает, что изоляция между измерительными штырями будет дополнительно проверена, и перемычки должны быть удалены.
Когда появляется это сообщение, необходимо удалить перемычки
- После снятия перемычек отображаются следующие два сообщения. Они носят информационный характер: показывают изоляцию между контактами.
Это данные испытаний изоляции области измерения
- Затем появляется сообщение о необходимости установки конденсатора емкостью более 100 мкФ. Его ножки нужно вставить в 1 и 3 штифты. Без этого шага калибровка не будет завершена. И сообщение о его необходимости будет появляться перед каждым измерением, что ужасно нервирует. Примечание! Конденсатор для калибровки должен быть листовым. В крайнем случае категорически не рекомендуется использовать керамику и электролит.
Этот тип сообщения указывает на необходимость установки конденсатора емкостью более 100 нФ
- После установки конденсатора достаточной емкости появится сообщение «Test End», и устройство продолжит работу без раздражающих сообщений.
Это пример калибровки конкретного универсального тестера радиокомпонентов. Это не значит, что у других будет то же самое. Но, по крайней мере, вы будете иметь представление о том, что от вас может потребоваться.
Проверка деталей универсальным тестером
Вставляем ножки деталей на двух разных участках. Через несколько секунд мы видим результаты измерения на экране. Указывается тип элемента (рисуется графическое изображение), в число которых входят пины, указывается его значение с указанием размера и единиц измерения, дополнительных параметров, если таковые имеются.
Проверка резисторов, ёмкостей
На фото представлены результаты измерений двух резисторов. Конечно, их можно проверить мультиметром, но тоже так быстро и легко. Эту функцию можно использовать, если цветовое кодирование по-прежнему плохо реализовано.
Примеры измерения универсальным измерителем сопротивления
Чтобы сменить деталь, просто выньте одну и наденьте другую. Неважно, какие гнезда. Измерение установленного элемента начинается после короткого нажатия на ручку. Поменяли резистор, прижали, получили новые результаты измерений. Без нажатия старые данные остаются на экране. Если в течение достаточно длительного времени (около 30 секунд) не предпринимать никаких действий, устройство выключается.
В измерительные гнезда устанавливается электролитический конденсатор и результат его измерений
то же самое и с конденсаторами. Просто вставьте ступни в измерительный блок и нажмите ручку.
Примечание! Перед испытанием электролитические конденсаторы необходимо разрядить. Или вам нужно купить новое устройство.
Как проверить диоды и стабилитроны
Проверить диоды можно универсальным измерителем. Некоторые, например диоды Шоттки, могут не тестировать все модели. Если вы работаете с такими специальными радиоэлементами, убедитесь, что в описании указан нужный вам тип диодов.
Результаты проверки диодов универсальным тестером
При проверке диодов также указывается тип (схематическое изображение), в какие выводы он подключен. Показывает падение напряжения, а в переходе — обратный ток и емкость (видимо, паразитные).
Проверка стабилитрона
При измерении стабилитронов показывает еще и обратное напряжение пробоя. Обычным мультиметром проверить этот параметр сложно. Скорее всего, это не всегда возможно. Многие устройства просто не могут «пробить» барьер.
Как измерить транзисторы
Транзисторы могут быть небольшими, с короткими ножками. Они установлены на двух измерительных площадках.
Тестер транзисторов определяет распиновку и все параметры
На ней изображена распиновка, т.е.к какому входу подключены эмиттер, коллектор, база. Указывается тип: NPN или PNP, переходные токи и напряжение. Если транзистор сломан, это называется низким сопротивлением.
Сборка GM328
Схема пайки нашего тестера радиодеталей мне не пригодилась, взял на обзор. На доске места для всех партий подписаны, ошибок нет. Кроме того, отверстия залуживаются и доска не требует дополнительной подготовки. Приступаем непосредственно к сборке. Первым делом припаял резисторы. Все они имеют маркировку, поэтому вы можете использовать любую онлайн-ссылку для расшифровки маркировки резистора. Но все равно проверял мультиметром каждую, потому что китайцы их пометили, мало ли что…
Сварочные резисторы
Затем транзистор, варистор и стабилитрон. Здесь важно не ошибиться, все сделано в корпусе ТО-92. Если вместо стабилитрона припаять что-нибудь еще, подача на плату нерегулируемого напряжения будет фатальной.
Паяем транзисторы
На следующем этапе припаивались конденсаторы и кварц. Все по маркировке, так как она прозрачная, а перепаяв кварцевый резонатор, можно ошибиться только нарочно).
Конденсаторы GM328
DIP: панель для микроконтроллера можно приварить с двух сторон, на полет это не повлияет.
Паяем DIP панель в GM328
Паяем крупные элементы, такие как панель ЗИФ для подключения измеряемой радиодетали, контакты для подключения дисплея, винтовые клеммы для генератора частоты, частотомер, вольтметр и розетку.
Панель ЗИФ и так далее…
Что ж, по окончании работы с паяльником привариваем энкодер, ведь придется как-то управлять всем хозяйством. Да и ножки к дисплею надо припаять, фото этого результата выкладывать не вижу смысла.
Кстати на всякий случай распиновка дисплея:
Распиновка дисплея ST7735
Как работать с универсальным тестером
Устройство работает от батареек и от сети через адаптер. Напряжение питания может составлять от 6 В до 12 В. Это зависит от конкретной модели.
Как пользоваться тестером транзисторов
Каждый раз при включении устройства проверяется блок питания и его параметры. Если блок питания в норме, отображается сообщение об этом и работа продолжается — начинается проверка установленной детали. Если источник питания не подходит, вам нужно будет заменить аккумулятор или включить его через адаптер и снова включить.
Установка радиоэлемента и его проверка
Проверяемые детали должны быть установлены в разъемы / штыри, расположенные под экраном. Обычно есть три зоны. У каждого разные контактные площадки. С таким устройством можно легко установить большие и мелкие детали — разъемы расположены на разном расстоянии.
Это три штифта (три зоны) для установки ножек тестируемых деталей
Устанавливаем ножки деталей в разъемы так, чтобы они попадали в разные зоны. Нажимаем кнопку «Старт». Через пару секунд на экране появятся результаты измерений. Отображается символ проверяемой детали и измеренные параметры.
Источники
- https://rightnotes.ru/instruktsii/gm328_tester_radiodetaley_cborka.html
- https://supereyes.ru/articles/multimetry-i-testery/rlc-izmeritel-kak-vybrat/
- https://elektroznatok.ru/tools/tester-radioelementov
- http://www.MasterVintik.ru/multipribor-gm328-dlya-proverki-radioelementov/
[свернуть]