Oscilloscope diy kit 13804k инструкция на русском

01

В этой статье будет дано исчерпывающее описание самого дешевого и простого осциллографа для начинающих радиолюбителей — DSO 138. Здесь не будет инструкций по сборке, тестирования на частотных генераторах, сравнения с «взрослыми» осциллографами — этой информации предостаточно в интернете.

03

На написание этой статьи вынудило элементарное непонимание многими начинающими возможностей прибора, а также того, как и в каких случаях его нужно использовать.

05

Введение, ликбез для начинающих

Начнем с базовых вещей — терминов, понятий, характеристик. Осциллограф это вольтметр, который умеет наглядно (в графическом виде) показывать напряжение выбранного участка электрической схемы и его (напряжения) изменение во времени. Осциллограф — глаза радиолюбителя.

06

Основной и главной характеристикой любого осциллографа является его частота — величина, показывающая какой количество замеров прибор производит в единицу времени — секунду. Сравнить частоту осциллографа можно с кратностью увеличения микроскопа — чем больше увеличение, тем больше можно увидеть. Отсюда главный и по сути единственный недостаток (принимая во внимание его цену) осциллографа DSO 138 — низкая частота — 200 KHz. Если говорить о применимости осциллографа DSO 138 к Arduino-разработкам, то по сравнению с частотой микроконтроллера 16 MHz, частота осциллографа действительно вызывает уныние. Очень многие процессы остаются за пределами возможностей DSO 138. Тем не менее, остается ещё достаточно много интересных экспериментов, с пониманием которых осциллограф DSO 138 поможет. Но об этом во второй части статьи.

07

Следующей существенной характеристикой любого осциллографа является количество каналов. Каждый канал отвечает за свой участок электрической схемы. Наличие нескольких каналов позволяет осуществлять «связанные» наблюдения, в этом случае показывая одновременно изменения напряжений в нескольких точках, осциллограф помогает их сравнивать и выявлять закономерности. У осциллографа DSO 138 всего 1 канал, так что информация этого абзаца предназначена больше для профессионального роста.

08

Развертка — это линия, которой осциллограф рисует уровень измеряемого напряжения. Для того, чтобы периодические колебания (например, синусоида переменного тока) отображались корректно (неподвижно по горизонтали) существует понятие синхронизации развертки. Синоним из англоязычного мира — триггер (защелка). Как правило, в осциллографах предусмотрена возможность изменения двух параметров схемы синхронизации — уровень запуска и его тип (по спаду и по фронту).

09

Выделяют также 3 режима развертки — автоматический, ждущий и однократный. Цифровые осциллографы имеют неоспоримое преимущество перед аналоговыми в том, что в них реализована возможность использования всех 3 режимов развертки, а в аналоговых — только автоматический. Это ограничение связано с конструктивной невозможностью работы в других режимах. Для наглядности, об этом поговорим позже, когда будем рассматривать соответствующие настройки осциллографа DSO 138.

10 Важно:

Для осциллографа DSO 138 максимально допустимое входящее (измеряемое) напряжение со штатным щупом (без делителя) — 50 В. При превышении данного значения очень вероятен выход прибора из строя.

11

В принципе, этой информации достаточно, для того чтобы начать работать с нашим подопытным.

12

Органы управления

Осциллограф DSO 138 имеет 3 переключателя режимов работы (слева) и 5 кнопок (справа), из которых 4 кнопки являются управляющими, а пятая кнопка RESET — кнопка перезагрузки.

14

Переключатель CPL отвечает за установку типа входного напряжения:

  • GND — вход осциллографа заземлен;
  • AC — режим измерения переменного тока (без учета постоянной составляющей сигнала);
  • DC — режим работы с постоянным током.
15

Два других переключателя — SEN1 и SEN2 (англ. sensitivity — чувствительность) — отвечают за чувствительность прибора при измерении разных напряжений. Переключатель SEN1 задает единичный номинал, а переключатель SEN2 задает множитель единичного номинала — таким образом задается номинал клетки экрана по вертикали. Например, при выборе 10mV и X5, значение одной клетки экрана по вертикали будет 50mV.

16

Индикация

Экран осциллографа DSO 138 информативен и содержит всю необходимую информацию. При помощи кнопки SEL осуществляется навигация по доступным параметрам. А при помощи кнопок + и происходит изменение выбранного параметра. Каждый из параметров при выборе либо подсвечивается рамкой, либо меняет цвет на бирюзовый. Всего параметров 6 (на рисунке ниже бирюзовые указатели):

18

Основной параметр — период равертки. Значения — от 10 мкс до 500 с. Позволяет «масштабировать» во времени происходящий процесс. Быстропротекающие процессы наблюдаются при меньших значениях параметра, медленные — при больших.

19

Режим развертки. Значения:

  • AUTO — автоколебательная, непрерывная. Развертка работает постоянно, даже когда сигнала нет. Применяется для исследования периодических сигналов, а также импульсных с небольшой скважностью.
  • NORM — ждущая. Срабатывает каждый раз, когда наступает заданное условие срабатывания триггера. Можно использовать для отслеживания реакции на подконтрольное событие, например, нажатие кнопки.
  • SIGN — однократная. Работает также как и NORM, но после первого срабатывания «замораживается» (индикатор запуска развертки Running меняется на HOLD). Следующий запуск возможен только после снятия режима удержания HOLD (кнопка ОК). Используется для получения массива данных, например, от пульта ИК, от датчика температуры, когда последующие данные «затерли» бы предыдущие в режиме SIGN.
20

Тип запуска синхронизации. Значения — по фронту , по спаду (по аналогии с прерываниями — RISING, FALLING). Первый тип — по фронту — заставляет срабатывать триггер при условии превышения сигналом заданного уровня триггера, второй тип — по спаду — при условии понижения уровня сигнала ниже уровня триггера.

21

Уровень триггера (стрелка справа по вертикальной шкале) является вторым настраиваемым параметром схемы синхронизации. Задаёт уровень напряжения, при достижении которого запускается развёртка.

22

На плате запаян светодиод, который морганием показывает момент срабатывания синхронизации:

24

Навигационная шкала позволяет перемещаться по полученной развертке во времени. Осциллограф каждый раз запоминает набор показаний состоящий из 1024 значений. А поскольку сразу все они не помещаются на экране, то для их просмотра и служит шкала.

25

Коррекция нулевого уровня (стрелка слева по вертикальной шкале) используется для коррекции нулевого уровня отображения графика относительно центра экрана по оси Y.

26 На заметку:

Чтобы выровнять и запомнить положение нулевого уровня сигнала, необходимо установить указатель коррекции нулевого уровня (кнопки + и ) по центру экрана по оси Y и удерживать в течение 3 секунд кнопку ОК. Указатель автоматически переустановится по центру графика.

27 На заметку:

Осциллограф DSO 138 умеет запоминать актуальную осциллограмму в энергонезависимую память*. Для того, чтобы сохранить данные в память нужно одновременно нажать SEL++. Для того, чтобы извлечь из памяти сохраненные данные и показать их на экране — SEL+.

28

Расширенный режим отображения данных

У осциллографа DSO 138 есть режим отображения цифровых данных о получаемом сигнале. Режим включается/отключается 3-секундным удержанием кнопки ОК, при выбранном для изменения параметром Период развертки. Выглядит расширенный режим следующим образом:

30

Расшифровка показателей представлена ниже:

  • Freq (Frequency) — Частота сигнала (Гц)
  • Cycl (Сycle) – длительность одного цикла (сек)
  • PW (Pulse Width) – ширина импульса (сек)
  • Duty – скважность (%) — отношение длительность одного цикла к ширине импульса. Понятие очень близкое к ШИМ – его смысл практически идентичный.
  • Vmax – максимальное напряжение (В)
  • Vmin – минимальное напряжение (В)
  • Vavr (Average Voltage) – среднее напряжение (В)
  • Vpp (Peak-to-Peak Voltage) — Размах напряжения сигнала – разница между максимальным и минимальным пиковым напряжением (В)
  • Vrms (Root Mean Square Voltage) — Среднеквадратичное напряжение (В)
31

Похожие запросы:

  • Для чего нужен осциллограф?
  • Как пользоваться осциллографом
  • Как выбрать осциллограф
  • Инструкция по эксплуатации осциллографа DSO 138
  • Недокументированные возможности DSO 138
  • Неочевидные функции осциллографа DSO 138
  • Инструкция по эксплуатации на русском DSO 138

Недавно я уже делал обзор на один конструктор, сегодня продолжение небольшой серии обзоров о всяких самодельных вещах для начинающих радиолюбителей.
Скажу сразу, это конечно не Тектроникс, и даже не DS203, но по своему интересная штучка, хоть по сути и игрушка.
Обычно перед тестами сначала вещь разбирают, здесь сначала надо собрать :)

На мой взгляд, осциллограф это «глаза» радиолюбителя. Этот прибор редко обладает высокой точностью, в отличие от мультиметра, но позволяет увидеть процессы в динамике, т.е. в «движении».
Иногда такой секундный «взгляд» может помочь больше, чем день ковыряния с тестером.

Раньше осциллографы были ламповыми, потом их сменили транзисторные, но отображался результат все равно на экране ЭЛТ. Со временем на смену им пришли их цифровые собратья, маленькие, легкие, ну а логическим продолжением стало появление и конструктора для сборки такого прибора.
Несколько лет назад я на некоторых форумах встречал попытки (порой удачные) разработать самодельный осциллограф. Конструктор конечно проще их и слабее по техническим характеристикам, но могу сказать с уверенностью, собрать его сможет даже школьник.
Разработан этот конструктор фирмой jyetech. Страничка этого прибора на сайте производителя.

Возможно специалистам этот обзор покажется излишне подробным, но практика общения с начинающими радилюбителями показала, что они так лучше воспринимают информацию.

В общем обо всем я расскажу немного ниже, а пока стандартное вступление, распаковка.

Прислали конструктор в обычном пакетике с защелкой, правда двольно плотном.
Как по мне, то для такого набора очень не помешала бы красивая упаковка. Не с целью защиты от повреждений, а с целю внешней эстетики. Ведь вещь должна быить приятной уже даже на этапе распаковки, ведь это конструктор.

В пакете находилось:
Инструкция
Печатная плата
Кабель для подключения к измеряемым цепям
Два пакетика с компонентами
Дисплей.

Технические характиристики устройства очень скромные, как по мне это скорее обучающий набор, чем измерительный прибор, хотя и при помощи даже этого прибора можно проводить измерения, пусть и простые.

Также в комплект входит подробная цветная инструкция на двух листах.
В инструкции расписана последовательность сборки, калибровки и краткое руководство по использованию.
Единственный минус, это все на английском, но картинки сделаны понятно, потому даже в таком варианте большая часть будет понятна.
В инструкции даже обозначены позиционные места элементов и сделаны «чекбоксы», где надо ставить галочку после завершения определенного этапа. Очень продуманно.

Отдельным листом идет табличка со списком SMD компонентов.
Стоит отметить, что существует как минимум два варианта устройства. На первой исходно распаян только микроконтроллер, на втором распаяны все SMD компоненты.
Первый вариант рассчитан на чуть более опытных пользователей.
В моем обзоре учавствует именно такой вариант, о существовании второго варианта я узнал позже.

Печатная плата двухсторонняя, как и в прошлом обзоре, даже цвет тот же.
Сверху нанесена маска с обозначением элементов, одна часть элементов обозначена полностью, вторая имеет только позиционный номер по схеме.

С обратной стороны маркировки нет, есть только обозначение перемычек и наименование модели устройства.
Плата покрыта маской, причем маска очень прочная (невольно пришлось проверить), на мой взгляд то что надо именно для начинающих, так как тяжело что то повредить в процессе сборки.

Как я выше писал, на плату нанесены обозначения устанавливаемых элементов, маркировка четкая, претензий к этому пункту нет.

Все контакты имеют лужение, паяется плата очень легко, ну почти легко, об этом нюансе в разделе сборки :)

Как я выше писал, на плате предустановлен микроконтроллер STM32F103C8
Это 32 битный микроконтроллер, базирующийся на ARM 32-bit Cortex™-M3 ядре.
Максимальная частота работы 72МГц, также он имеет 2 x 12-bit, 1 μs АЦП.

С обоих сторон платы указана ее модель, DSO138.

Вернемся к перечислению комплектующих.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой.

Высыпаем на стол содержимое большого пакета. Внутри находятся разъемы, стойки и электролитические конденсаторы. Также в пакете находятся еще два маленьких пакетика :)

Раскрыв все пакеты мы видим довольно много радиодеталей. Хотя с учетом того что это цифровой осциллограф, то я ожидал больше.
Приятно то, что SMD резисторы подписаны, хотя как по мне, не мешало бы подписать и обычные резисторы, или дать в комплекте небольшую памятку по цветовой маркировке.

Дислей упакован в мягкий материал, как оказалось, он не скользит, потому болтаться в пакете не будет, а печатная плата защищает его от повреждений при транспортировке.
Но все равно, я считаю что нормальная упаковка не помешала бы.

В устройстве применен 2.4 дюйма TFT LCD индикатор со светодиодной подсветкой.
Разрешение экрана 320х240 пикселей.

Также в комплект входит небольшой кабель. Для подключения к осциллографу применен стандартный BNC разъем, на втором конце кабеля пара «крокодилов».
Кабель средней мягкости, «крокодилы» довольно большие.

Ну и вид на весь набор в полностью разложенном виде.

Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.

В прошлый раз я начинал сборку с резисторов, как с самых низких элементов на плате.
При наличии SMD компонентов сборку лучше начать с них.
Для этого я разложил все SMD компоненты на прилагаемом листе с указанием их номинала и позиционного обозначения на схеме.

Когда приготовился уже паять, то подумал, что элементы в слишком мелком, для начинающего, корпусе, вполне можно было применить резисторы размером 1206 вместо 0805. Разница в занимаемом месте незначительна, но паять проще.
Вторая мысль была — вот потеряю сейчас резистор и не найду. Ладно я, открою стол и достану второй такой резистор, но не у всех есть такой выбор. В данном случае производитель позаботился об этом.
Всех резисторов (жалко что и не микросхем) дал на один больше, т.е. в запас, очень предусмотрительно, зачет.

Дальше я немного расскажу о том, как паяю такие компоненты я, и как советую делать другим, но это просто мое мнение, естественно каждый может делать по своему.
Иногда SMD компоненты паяют при помощи специальной пасты, но она нечасто есть у начинающего радиолюбителя (да и у неначинающего тоже), потому я покажу как проще работать без нее.
Берем пинцетом компонент, прикладываем к месту установки.

Вообще часто я сначала промазываю место установки компонента флюсом, это облегчает пайку, но усложняет промывку платы, вымыть флюс из под компонента иногда бывает сложно.
Поэтому я в данном случае использовал просто 1мм трубчатый припой с флюсом.
Придерживая компонент пинцетом, набираем на жало паяльника капельку припоя и припаиваем одну сторону компонента.
Не страшно если пайка получилась некрасивая или не очень прочная, на данном этапе достаточно того, что компонент держится сам.
Затем повторяем операцию с остальными компонентами.
После того как мы таким образом закрепили все компоненты (или все компоненты одного номинала), можно спокойно припаять как надо, для этого поворачиваем плату так, чтобы уже припаянная сторона была слева и держа паяльник в правой руке (если вы правша), а припой в левой, проходим все незапаянные места. Если пайка второй стороны не устраивает, то поворачиваем плату на 180 градусов и аналогично пропаиваем другую сторону компонента.
Так получается проще и быстрее, чем запаивать каждый компонент индивидуально.

Здесь на фото видно несколько установленных резисторов, но пока припаянных только с одной стороны.

Микросхемы в SMD корпусе маркируются точно так же как в обычном, слева около метки (хотя обычно слева снизу если смотреть на маркировку) находится первый контакт, остальные считаются против часовой стрелки.
На фото место для установки микросхемы и пример, как она должна устанавливаться.

С микросхемами поступаем полностью аналогично примеру с резисторами.
Выставляем микросхему на площадках, припаиваем любой один вывод (лучше крайний), немного корректируем положение микросхемы (при необходимости) и запаиваем остальные контакты.
С микросхемой- стабилизатором можно поступить по разному, но я советую припаивать сначала лепесток, а потом контактные площадки, тогда микросхема точно будет ровно прилегать к плате.
Но никто не запрещает припаять сначала крайний вывод, а потом все остальные.

Все SMD компоненты установлены и припаяны, осталось несколько резисторов, по одному каждого номинала, откладываем их в пакетик, может когда нибудь пригодятся.

Переходим к монтажу обычных резисторов.
В прошлом обзоре я рассказывал немного о цветовой маркировке. В этот раз я скорее посоветую просто измерить сопротивление резисторов при помощи мультиметра.
Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет).
Изначально я искал в инструкции список номиналов и позиционных обозначений, но не нашел, так как искал их в виде таблички, а уже после монтажа выяснилось, что они есть на картинках, причем с чекбоксами для отметки установленных позиций.
Из-за моей невнимательности мне пришлось сделать свою табличку, по которой я рядом разложил устанавливаемые компоненты.
Слева отдельно виден резистор, при составлении таблички он был лишним, потому я оставил его под конец.

С резисторами поступаем похожим образом как в прошлом обзоре, формуем выводы при помощи пинцета (либо специальной оправки) так, чтобы резистор легко становился на свое место.
Будье внимательны, позиционные обозначения компонетов на плате могут быть не только надписаны, а и ПОДписаны и это может сыграть с вами злую шутку, особенно если на плате присутствует много компонентов в один ряд.

Вот тут вылез небольшой минус печатной платы.
Дело в том, что отверстия под резисторы имеют очень большой диаметр, а так как монтаж относительно плотный, то я решил выводы загибать, но несильно и потому в таких отверстиях держатся они не очень хорошо.

Из-за того, что резисторы держались не очень хорошо, я рекомендую не набивать сразу все номиналы, а установить половину или треть, потом запаять их и установить остальные.
Не бойтесь сильно обкусывать выводы, двухсторонняя плата с металлизацией прощает такие вещи, всегда можно припаять резистор хоть сверху, чего не сделаешь при односторонней печатной плате.

Все, резисторы запаяны, переходим к конденсаторам.
Я поступил с ними также как с резисторами, разложив согласно табличке.
Кстати у меня все таки остался один лишний резистор, видимо случайно положили.

Несколько слов о маркировке.
Такие конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22пФ.
Они маркируются просто указанием емкости так как емкость меньше 100пФ, т.е. меньше трехзначного числа.

Сначала запаиваю мелкие конденсаторы согласно позиционным обозначениям (тот еще квест).

С конденсаторами емкостью 100нФ я немного ступил, не добавив их в табличку сразу, пришлось делать это потом от руки.

Выводы конденсаторов я также загибал не полностью, а примерно под 45 градусов, этого вполне достаточно чтобы компонент не выпал.
Кстати, на этом фото видно, что пятачки, соединенные с общим контактом платы, выполнены правильно, есть кольцевой промежуток для уменьшения теплоотдачи, это облегчает пайку таких мест.

Как то я немного расслабился на этой плате и вспомнил о дросселях и диодах уже после запаивания керамических конденсаторов, хотя лучше было их впаять перед ними.
Но особо ситуацию это не изменило, потому перейдем к ним.
В комплекте к плате дали три дросселя и два диода (1N4007 и 1N5815).

С диодами все ясно, место подписано, катод обозначен белой полосой на самом диоде и на плате, перепутать очень сложно.
С дросселями бывает немного сложнее, они иногда также имеют цветовую маркировку, благо в данном случае все три дросселя имеют один номинал :)

На плате дроссели обозначаются буквой L и волнистой линией.
На фото участок платы с запаянными дросселями и диодами.

В осциллографе применено два транзистора разной проводимости и две микросхемы стабилизаторы, на разную полярность. В связи с этим будьте внимательны при монтаже, так как обозначение 78L05 очень похоже на 79L05, но если поставить наоборот, то вы скорее всего поедете за новыми.
С транзисторами немного проще, хоть на плате и указана просто проводимость без указания типа транзистора, но тип транзистора и его позиционное обозначение можно без труда посмотреть по схеме или карте установки компонентов.
Выводы здесь формовать заметно тяжелее, так как отформовать надо все три вывода, лучше не спешить, чтобы не отломать выводы.

Формуются выводы одинаково, это упрощает задачу.
На плате положение транзисторов и стабилизаторов обозначено, но на всякий случай я сделал фото, как они должны быть установлены.

В комплекте был мощный (относительно) дроссель, который используется в преобразователе для получения отрицательной полярности и кварцевый резонатор.
Им выводы формовать не надо.

Теперь о кварцевом резонаторе, он изготовлен под частоту 8МГц, полярности также не имеет, но под него лучше подложить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
не удивляйтесь, что я в начале указал что процессор имеет максимальную частоту 72МГц, а кварц стоит всего на 8, внутри процессора есть как делители частоты, так иногда и умножители, потому ядро вполне может работать например на частоте 8х8=64МГц.
Почему то на плате контакты дросселя имеют квадратную и круглую форму, хотя сам по себе дроссель — элемент неполярный, потому просто впаиваем его на место, выводы лучше не загибать.

В комплекте дали довольно много электролитических конденсаторов, все они имеют одинаковую емкость в 100мкФ и напряжение в 16 Вольт.
Их надо запаивать обязательно с соблюдением полярности иначе возможны пиротехнические эффекты :)
Длинный вывод конденсатора это плюсовой контакт. На плате присутствует маркировка полярности как около соответствующего вывода, так и рядом с кружком, отмечающим положение конденсатора, довольно удобно.
Отмечен плюсовой вывод. Иногда маркируют минусовой, в этом случае примерно половина кружочка заштриховывается. А еще есть такой производитель компьютерного железа как Асус, который заштриховывает плюсовую сторону, потому всегда надо быть внимательным.

Потихоньку мы подошли к довольно редкому компоненту, подстроечному конденсатору.
Это конденсатор, емкость которого можно изменять в небольших пределах, например 10-30пФ, обычно и емкость этих конденсаторов невелика, до 40-50пФ.
Вообще это элемент неполярный, т.е. формально не имеет значения как его впаивать, но иногда имеет значение как его впаивать.
Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. ТАк вот в данной схеме один вывод конденсатора подключен к общему проводнику платы, а второй к остальным элементам.
Чтобы было меньше влияние отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом соединялся с общим проводом платы.
На плате указана маркировка как впаивать, а дальше по ходу обзора будет и фотка, где это видно.

Кнопки и переключатели.
Ну здесь тяжело что то сделать неправильно, так как очень тяжело их вставить как нибудь не так :)
Скажу лишь, что выводы корпуса переключателей надо припаять к плате.
В случае переключателя это не просто добавит прочности, а и соединит корпус переключателя с общим контактом платы и корпус переключателя будет работать как экран от помех.

Разъемы.
Самая сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, потому для BNC разъема лучше взять паяльник помощнее.

На фото можно увидеть —
Пайка BNC разъема, дополнительного разъема питания (единственный разъем здесь, который можно поставить наоборот) и USB разъема.

С индикатором, а вернее с разъемами для его подключения, вышла небольшая неприятность.
В комплекте забыли положить пару двойных контактов (пинов), они тут используются для закрепления стороны индикатора, обратной сигнальному разъему.

Но посмотрев на распиновку сигнального разъема я понял, что некоторые контакты можно запросто откусить и использовать вместо недостающих.
Я мог открыть ящик стола и достать оттуда такой разъем, но это было бы неинтересно и в какой то степени нечестно.

Запаиваем гнездовые (так называемые — мамы) части разъемов на плату.

На плате присутствует выход встроенного генератора 1КГц, он нам потом понадобится, хоть эти два контакта и соединяются друг с другом, но мы все равно впаиваем перемычку, она будет удобна для подключения «крокодила» сигнального кабеля.
Для перемычки удобно использовать обкушенный вывод электролитического конденсатора, они длинные и довольно жесткие.
Находится эта перемычка слева от разъема питания.

Также на плате присутствует пара важных перемычек.
Одну из них, под названием JP3 надо закоротить сразу, делается это при помощи капельки припоя.

Со второй перемычкой, немножко сложнее.
Сначала надо подключить мультиметр в режиме измерения напряжения в контрольной точке, находящейся над лепестком микросхемы-стабилизатора. Второй щуп подключается к любому контакту соединенному с общим контактом платы, например к USB разъему.
На плату подается питание и проверяется напряжение в контрольной точке, если все в порядке, то там должно быть около 3.3 Вольта.

После этого перемычка JP4, находящаяся чуть левее и ниже стабилизатора, также соединяется при помощи капли припоя.

На обратной стороне платы есть еще четыре перемычки, их трогать не надо, это технологические перемычки, для диагностики платы и перевода процессора в режим прошивки.

Возвращаемся к дисплею. Как я выше писал, мне пришлось откусить несколько контактных пар, чтобы применить их взамен отсутствующих.
Но при сборке я решил выкусить не крайние пары, а как бы из середины, а крайнюю запаять на место, так будет сложнее перепутать что то при установке.

Хоть на дисплее и наклеена защитная пленка, я бы рекомендовал при припаивании разъема накрыть экран куском бумаги, в таком случае капли флюса, который кипит при пайке, будут отлетать на бумагу, а не на экран.

Все, можно подавать питание и проверять :)
Кстати, один из диодов, который мы запаивали ранее, служит для защиты электроники от неправильного подключения питания, со стороны разработчика это полезный шаг, так как спалить плату неправильной полярностью можно в секунду.
На плате указано питание 9 Вольт, но при этом оговорен диапазон до 12 Вольт.
В тестах я пита плату от 12 Вольт блока питания, но попробовал и от двух последовательно соединенных литиевых аккумуляторов, разница была только в чуть меньшей яркости подсветки экрана, думаю что применив стабилизатор 5 Вольт с низким падением и убрав защитный диод (или подключив его параллельно питанию и установив предохранитель), можно вполне спокойно питать плату от двух литиевых аккумуляторов.
Как вариант, использовать преобразователь питания 3.7-5 Вольт.

Так как запуск платы прошел успешно, то перед настройкой плату лучше промыть.
Я пользуюсь ацетоном, хотя он запрещен к продаже, но есть небольшие запасы, как вариант еще использовали толуол, ну или в крайнем случае медицинский спирт.
Но плату надо промыть обязательно, целиком «купать» ее не надо, достаточно пройтись снизу ваткой.

Особое внимание надо уделить переключателям режимов работы и входному разъему.
Хоть частоты и не очень высокие, но паразитное сопротивление, которое дает флюс, может сделать плохое дело.

В конце ставим плату «на ноги», используя комплектные стойки, они конечно чуть меньше чем надо и немного болтаются, но все равно так удобнее, чем просто класть на стол, не говоря о том, что выводы деталей могут поцарапать крышку стола, ну и так ничего не попадает под плату и не закоротит ничего под ней.

Первая проверка от встроенного генератора, для этого подключаем «крокодил» с красным изолятором к перемычке около разъема питания, черный провод никуда подключать не надо.

Чуть не забыл, несколько слов о назначении переключателей и кнопок.
Слева расположены три трехпозиционных переключателя.
Верхний переключает режим работы входа.
Заземлен
Режим работы без учета постоянной составляющей, или АС, или режим работы с закрытым входом. Хорошо подходит для измерения переменного тока.
Режим работы с возможностью измерения постоянного тока, или режим работы с открытым входом. Позволяет проводить измерения с учетом постоянной составляющей напряжения.

Второй и третий переключатели позволяют выбрать масштаб по оси напряжения.
Если выбран 1 Вольт, то это означает, что в этом режиме размах в одну масштабную клетку экрана будет равен напряжению в 1 Вольт.
При этом средний переключатель позволяет выбрать напряжение, а нижний множитель, потому при помощи трех переключателей можно выбрать девять фиксированных уровней напряжения от 10мВ до 5 Вольт на клетку.

Справа расположены кнопки управления режимами развертки и режима работы.
Описание кнопок сверху вниз.
1. При коротком нажатии включает режим HOLD, т.е. фиксация показаний на дисплее. при длинном (более 3 секунд) включает или выключает режим цифрового вывода данных параметра сигнала, частоту, период, напряжения.
2. Кнопка увеличения выбранного параметра
3. Кнопка уменьшения выбранного параметра.
4. Кнопка перебора режимов работы.
Управление временем развертки, диапазон от 10мкс до 500сек.
Выбор режима работы триггера синхронизации, Авто, нормальный и ждущий.
Режим захвата сигнала синхронизации триггером, по фронту или тылу сигнала.
Выбор уровня напряжения захвата сигнала триггера синхронизации.
Прокрутка осциллограммы по горизонтали, позволяет просмотреть сигнал «за пределами экрана»
Установка позиции осциллограммы по вертикали, помогает при измерении напряжений сигнала и когда осциллограмма не влазит на экран…
Кнопка сброса, просто перезагрузка осциллографа, как выяснилось иногда бывает очень удобна.
Рядом с кнопкой есть зеленый светодиод, он моргает когда осциллограф синхронизировался.

Все режимы при выключении прибора запоминаются и включается он потом в том режиме, в котором его выключили.

Еще на плате есть разъем USB, но как я понял, он в этом варианте не используется, при подключении к компьютеру выдает что обнаружено неизвестное устройство.
Также есть контакты для перепрошивки устройства.

Все режимы, выбранные кнопками или переключателями, дублируются на экране осциллографа.

Версию ПО я не обновлял, так как стоит последняя на текущий момент 113-13801-042

Настройка прибора очень проста, помогает в этом встроенный генератор.
Скорее всего при подключении к встроенному генератору прямоугольных импульсов вы увидите следующую картину, вместо ровных прямоугольников будет либо «завал» угла верха/низа, вниз или вверх.

Корректируется это вращением подстроечных конденсаторов.
Конденсаторов два, в режиме 0.1 Вольта подстраиваем С4, в режиме 1 Вольт соответственно С6. В режиме 10мВ корректировка не производится.

Регулировкой необходимо добиться ровных прямоугольных импульсов на экране, как это показано на фотографии.

Я посмотрел этот сигнал другим осциллографом, на мой взгляд он достаточно «ровный» для калибровки данного осциллографа.

Хоть конденсаторы и установлены правильно, но даже в таком варианте небольшое влияние от металлической отвертки присутствует, пока удерживаем жало на регулируемом элементе, результат один, стоит убрать жало, результат чуть меняется.
В таком варианте либо подкручивать маленькими сдвигами, либо использовать пластмассовую (диэлектрическую) отвертку.
Мне такая отвертка досталась с какой то камерой Хиквижн.

С одной стороны у нее крестовое жало, причем срезанное, именно для таких конденсаторов, с другой — прямое.

Так как данный осциллограф больше прибор для изучения принципов работы, чем действительно полноценный прибор, то и проводить полноценное тестирование я не вижу смысла, хотя основные вещи покажу и проверю.
1. Совсем забыл, иногда при работе внизу экрана вылазит реклама производителя :)
2. Отображения цифровых значений параметра сигнала, подан сигнал от встроенного генератора прямоугольных импульсов.
3. Вот такой собственный шум входа осциллографа, в интернет я встречал упоминания об этом, а так же о том, что новая версия имеет меньший уровень шумов.
4. Для проверки, что это действительно шум аналоговой части, а не наводки, я перевел осциллограф в режим с закороченным входом.

1. Переключил время развертки в режим 500сек на деление, как по мне, ну это уж совсем для экстремалов.
2. Уровень входного сигнала можно менять от 10мВ на клетку
3. До 5 Вольт на клетку.
4. Прямоугольный сигнал частотой 10КГц с генератора осциллографа DS203.

1. Прямоугольный сигнал частотой 50КГц с генератора осциллографа DS203. Видно что на такой частоте сигнал уже сильно искажен. 100КГц подавать уже не имеет особого смысла.
2. Синусоидальный сигнал частотой 20КГц с генератора осциллографа DS203.
3. Сигнал треугольной формы частотой 20КГц с генератора осциллографа DS203.
4. Пилообразный сигнал частотой 20КГц с генератора осциллографа DS203.

Дальше я решил немного посмотреть как ведет себя прибор при работе с синусоидальным сигналом, поданным от аналогового генератора и сравнить его со своим DS203
1. Частота 1КГц
2. Частота 10КГц

1. Частота 100КГц, в конструкторе нельзя выбрать время развертки меньше 10мс, потому только так :(
2. А вот так может выглядеть синусоидальный сигнал частотой 20КГц, поданный с DS203, но в другом режиме входного делителя. Выше был скриншот такого сигнала, но поданный в положении делителя 1 Вольт х 1, здесь сигнал в режиме 0.1 Вольт х 5.
Ниже видно как выглядит этот сигнал при подаче на DS203

Сигнал 20КГц, поданный с аналогового генератора.

Сравнительное фото двух осциллографов, DSO138 и DS203. Оба подключены к аналоговому генератору синуса, частота 20КГц, на обоих осциллографах выставлен одинаковый режим работы.

Резюме.
Плюсы
Интересная обучающая конструкция
Качественно изготовленная печатная плата, прочное защитное покрытие.
Собрать конструктор под силу даже начинающему радиолюбителю.
Продуманная комплектация, порадовали запасные резисторы в комплекте.
В инструкции хорошо расписан процесс сборки.

Минусы
Небольшая частота входного сигнала.
Забыли положить в комплект пару контактов для крепления индикатора
Простенькая упаковка.

Мое мнение. Скажу коротко, был бы у меня в детстве такой конструктор, я был бы наверное очень счастлив, даже несмотря на его недостатки.
А если длинно, то конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с очень важным для радиолюбителя прибором — осциллографом. Пусть простым, пусть без памяти и с низкой частотой, но это куда лучше возни с аудиокартами.
Как серьезный прибор считать его конечно нельзя, но он таким и не позиционируется, а как конструктор, более чем.
Зачем я заказал этот конструктор? Да просто было интересно, ведь все мы любим игрушки :)

Надеюсь что обзор был интересен и полезен, жду предложений по поводу вариантов тестирования :)
Ну и как всегда, дополнительные материалы, прошивки, инструкции, исходники, схема, описание — скачать.
Как дополнение, схема отдельно.

Схема

Товар для написания обзора предоставлен магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Soldering Hints

1

Put leads through mounting holes from the side with

part outline. Ensue component evenly touch PCB.

2

Solder leads at the other side. Solder should fully

fill and cover soldering pads.

Avoid bridges between

neighbering pads.

3

Cut unused leads

flush with cutter.

1. Resistors

Note:

Always meter resistor

values before soldering

R7, R36

180

:

R8, R12, R13 120

:

R1, R14, R16 100K

:

R9, R15, R26 1K

:

R2

:

1.8M

R10

:

3K

R3

:

200K

R11

:

150

R4

:

2M

R38

:

1.5K

20K

R5

:

R28, R40

:

470

R6

:

300

R37, R39

:

10K

2. HF-Chokes

L1,L3,L4

:

100

3. Diodes

Cathode

D1

:

1N5819

D2

:

1N4004

(or 1N4007)

4. Crystal

Y1

:

8MHz

JYE Tech Ltd.

— www.jyetech.com —

DSO 138 Oscilloscope DIY Kit

User Manual

Tools you need

4

1

Iron (20W)

2

Solder wire

5

3

Multimeter

6

5. USB Socket *

J4

Note:

This connector is

optional.

6. Tact Switches

SW4, SW5,

SW6, SW7,

SW8

7. Ceramic Capacitors

C1, C9,

C10, C11,

H

C14, C15,

C16, C17,

C18, C20,

C23

C7, C8

C2

:

330pF

C3

:

3pF

C12, C13

C5

:

1pF

8. LED

Solder positive pole

(the longer lead) to

D3

the square pad

Before you start

Screw driver

1

Check part values & quantities against part list

Flush cutter

2

Always meter resistor values before soldering

Tweezers

3

Understand all part polarities and orientations

Install all SMD parts before proceeding

to Step1 if you purchased kit 13804K.

9. Pin header (for power)

USB mini -B

:

10. Transistors

:

6 X 6 X 5mm

11. Regulators

:

0.1 F

12 0p F

:

12. Capacitor trimmers

22pF

:

13. Power inductor

:

3mm, green

14. Electrolytic capacitors

Solder positive pole

(the longer lead) to

the square pad

15. Power connector

Face the opening

outward

2 Pin

J9

:

16. Pin-header (male) *

:

8550

Q1

:

Q2

9014

Packages are similar.

Do not mix up!

17. Pin-header (female)

:

79L05

U4

:

78L05

U5

Packages are similar.

Do not mix up!

18. Slide switches

C4, C6

:

5 — 30pF

19. BNC connector

L2

:

1mH/0.5A

/ 16 V

:

C19, C21,

100

F

C22, C24,

C25, C26

:

DC005

J10

:

J5

1 X 3 pin

:

1 X 4 pin

J6

Note:

These pin-headers are

optional.

:

1 X 2 pin

J7, J8

:

2 X 20 pin

J3

2P3T

SW1, SW2,

:

SW3

J1

:

BNC

Note:

The thicker pins need

to heat up longer to get

good soldering result.

Page 1

aave

13 ноября 2015

В прошлый раз мы смонтировали все радиоэлелементы на печатную плату цифрового осциллографа DSO138. Сейчас закончим его сборку и произведём первичную настройку и проверку работоспособности.

Цифровой осциллограф DSO138

Вам понадобится

  • — Набор с цифровым осциллографом DSO138;
  • — мультиметр;
  • — источник питания на 8-12 В;
  • — пинцет;
  • — отвёртка для мелких работ;
  • — паяльник;
  • — припой и флюс;
  • — ацетон или бензин.

Инструкция

Первым делом припаяем петлю из проволоки толщиной 0,5 мм в отверстия разъёма J2. Это будет контакт для выхода сигнала самотестирования осциллографа.
После этого закоротим с помощью паяльника и припоя контакты перемычки JP3.

Выход сигнала самотестирования осциллографа DSO138

Займёмся платой TFT LCD экрана. Нужно припаять 3 штыревых разъёма с нижней части платы. Два маленьких разъёма по два пина и один двухрядный 40-пиновый.
Мы почти закончили сборку. Но не спешите убирать паяльник, он нам ещё ненадолго понадобится.

Плата LCD экрана осциллографа DSO138

Теперь желательно промыть плату ацетоном, бензином или каким-либо другим способом очистить от следов флюса. Когда промоем плату, нужно дать ей полностью высохнуть, это очень важно!
После этого подключим источник питания к плате и замерим напряжение между землёй и точкой TP22. Если напряжение примерно равно 3,3 вольтам, значит вы всё хорошо спаяли, поздравляю! Сейчас нужно отключить источник питания и закоротить припоем контакты перемычки JP4.

Измеряем напряжение в точке TP22 осциллографа DSO138

Сейчас можно подключить к осциллографу ЖК дисплей, совместив его штыревые выводы с колодками на печатной плате осциллографа.
Подключите источник питания к осциллографу. Должен загореться дисплей и два раза моргнуть светодиод. Затем на пару секунд на экране появится логотип изготовителя и загрузочная информация. После этого осциллограф войдёт в рабочий режим.

Подключаем LCD дисплей осциллографа DSO138

Подключим пробник к BNC разъёму осциллографа и проведём первый тест. Никуда не подключая чёрный провод пробника, прикоснитесь рукой к красному. На осциллограмме должен появится сигнал наводки от вашей руки.

Тест осциллографа DSO138 касанием рукой

Теперь откалибруем осциллограф. Подключите красный щуп пробника к петле сигнала самотестирования, а чёрный оставьте неподключённым. Переключатель SEN1 поставьте в положение «0.1V», SEN2 в положение «X5», а CPL — в положение «AC» или «DC». С помощью тактовой кнопки SEL переместите курсор на метку времени, а кнопками «+» и «-» выставьте время «0.2ms», как на иллюстрации. На осциллограмме должен быть виден красивый меандр. Если края импульсов закругляются или имеют резкие острые пики по краям, нужно, поворачивая отвёрткой конденсатор C4, добиться того, чтобы импульсы сигнала стали максимально близкими к прямоугольным.

Настройка осциллографа DSO138

Теперь переключатель SEN1 поставим в положение «1V», SEN2 — в положение «X1». Остальные настройки оставим прежними. Аналогично предыдущему пункту, если сигнал далёк от прямоугольного, то подкорректируем его с помощью регулировки конденсатора C6.

Настройка осциллографа DSO138

На этом настройка осциллографа DSO138 закончена. Давайте проверим его в боевых условиях.
Подключим щупы осциллографа к работающей электрической схеме и посмотрим сигнал.

Цифровой осциллограф DSO138 в работе

Для управления чувствительностью служат переключатели SEL1 и SEL2. Первый из них задаёт базовый уровень напряжения, второй — множитель. Например если выставить переключатели в положения «0,1V» и «X5», разрешение вертикальной шкалы будет 0,5 вольт на клетку.
Кнопка SEL служит для перемещения по элементам экрана, которые можно настраивать. Настройка выделенного элемента осуществляется с помощью кнопок + и -. Элементами для настройки являются: время развёртки, режим срабатывания, выбор фронта триггера, уровень срабатывания, перемещение вдоль горизонтальной оси осциллограммы, перемещение оси по вертикали.
Поддерживаемые режимы работы: автоматический, нормальный и однократный. Автоматический режим постоянно выводит сигнал на экран осциллографа. При нормальном режиме сигнал выводится каждый раз, когда превышен заданный триггером порог. Однократный режим выводит сигнал при первом срабатывании триггера.
Кнопка OK позволяет остановить развёртку и удерживать текущую осциллограмму на экране.
Кнопка RESET сбрасывает и перезагружает цифровой осциллограф.
Полезная функция осциллографа DSO138 — отображение информации о сигнале: частоты, периода, скважности, размаха, среднего напряжения и т.д. Чтобы активировать её, нажмите и удерживайте 2 секунды кнопку OK.
Осциллограф умеет запоминать текущую осциллограмму в энергонезависимой памяти. Для этого нажмите одновременно SEL и +. Чтобы вызвать на экран сохранённую в памяти осциллограмму, нажмите SEL и -.

Отображение параметров сигнала на дисплее осциллографа DSO138

Источники:

  • Осциллограф DSO138 устройство и приспособление к нему

Осциллограф DSO138 имеет три режима работы:

  • Автоматический режим постоянно выводит сигнал на экран осциллографа.
  • Нормальный режим — сигнал выводится каждый раз, когда превышен заданный триггером порог.
  • Однократный режим выводит сигнал при первом срабатывании триггера.

Для управления чувствительностью осциллографа служат переключатели SEL1 и SEL2.

Первый из них задаёт базовый уровень напряжения, второй — множитель (например если выставить переключатели в положения «0,1V» и «X5«, разрешение вертикальной шкалы будет 0,5 вольт на клетку).

Кнопка SEL служит для перемещения по элементам экрана, которые можно настраивать.

Настройка выделенного элемента осуществляется с помощью кнопок + и – .

Элементами для настройки являются: время развёртки, режим работы, выбор фронта триггера, порог срабатывания, перемещение вдоль горизонтальной оси осциллограммы, перемещение оси по вертикали.

Кнопка RESET сбрасывает и перезагружает цифровой осциллограф.

Кнопка OK позволяет остановить развёртку и удерживать текущую осциллограмму на экране.

Полезная функция осциллографа — отображение информации о сигнале: частоты, периода, скважности, размаха, среднего напряжения и т.д.

Чтобы активировать её, переместите курсор кнопкой SEL на выбор времени развёртки, а затем нажмите и удерживайте 2 секунды кнопку OK.

Осциллограф умеет запоминать текущую осциллограмму в энергонезависимой памяти. Для этого нажмите одновременно SEL и + .

Чтобы вызвать на экран сохранённую в памяти осциллограмму, нажмите SEL и – .

Описание органов управления осциллографа DSO138:

Connector for probe — сюда подключается щуп.

Oscilloscope mode — режим (HOLD — осциллограмма не обновляется, RUN — нормальный режим).

Horizontal position — развертка идет от середины экрана вправо; осциллограф держит в памяти больше, чем вывел на экран, поэтому картинку можно сдвигать для просмотра скрытых участков сигнала.

Vertical position indicator — индикатор позиции нуля сигнала по вертикали.

Trigger level — напряжения, по которому срабатывает триггер и запускает развертку.

Connectors for power supply — сюда подаётся питание.

OK — кнопка подтверждения. В режиме выбора времени развертки при ее длительном удержании на экран выводятся параметры сигнала; чтобы вывести частоту сигнала, необходимо, чтобы сигнал проходил через линию 0.

+/–  — изменение величины выбранного параметра.

SEL — выбор между параметрами

Triggger level Indicator — напряжения срабатывания триггера.

Reset — кнопка перезагрузки микроконтроллера.

Trigged indicator — светодиод мигает каждый раз при захвате триггера.

Trigger Slope — фронт срабатывания триггера — передний или задний.

Trigger mode — режим работы развертки: auto — ждёт захвата триггера, если его нет, то запускается автоматически через определенный промежуток времени, normal — развертка происходит только от триггера, single — после срабатывания триггера построит график и зависнет в режиме HOLD до нажатия кнопки OK.

Timebase — развертка, время на деление.

Couple — показывает состояние входа (GND — вход зажат на землю, AC — показана только переменная составляющая, закрытый вход через ёмкость, DC — вход открыт, проходят как переменная, так и постоянная составляющие).

Sensivity — чувствительность, напряжение на деление.

Sensivity selection 1/2 — переключатели чувствительности, чувствительность определяется как положение переключателя 2 умноженное на множитель, выбранный положением переключателя 3.

Couple selection — выбор входа — открытый, закрытый или земля.

Ниже по ссылке можно скачать DSO 138 Oscilloscope DIY Kit User Manual — инструкция на английском языке.

И принципиальная электрическая схема осциллографа.

Дополнительная информация:

  • Категория: Обзоры и статьи
  • Рубрика: Аксессуары
  • Файл для загрузки: Скачать
    , Скачать
  • Номер: 284

Поделиться:

Понравилась статья? Поделить с друзьями:
  • Tmh e 4 16a x1 ip20 инструкция по применению
  • Для руководства в своей работе
  • Слабилен инструкция по применению таблетки через сколько действие наступает
  • Ибуфен инструкция по применению суспензия для детей инструкция
  • Ацц 200 официальная инструкция по применению