Друзья, в преддверии выходных хотим поделиться с вами еще одной интересной публикацией, которую хотим приурочить к запуску новой группы по курсу «Разработчик JavaScript».
Потратив последние несколько месяцев на разработку приложений на React и библиотек с использованием Typescript, я решил поделиться некоторыми вещами, которые узнал за это время. В этом руководстве я расскажу вам про шаблоны, которые я использую для Typescript и React в 80% случаев.
Стоит ли изучать Typescript для разработки приложений на React? Стоит, еще как стоит! Для себя я осознал на практике, что строгая типизация приводит к написанию гораздо более надежного кода, быстрой разработке, особенно в крупных проектах. Сначала вы, вероятно, будете разочарованы, но по мере работы вы обнаружите, что хотя бы минимальный шаблон действительно будет очень кстати.
И если вы застряли на чем-то, помните, что вы всегда можете типизировать что- нибудь как any. Any – ваш новый друг. А теперь перейдем непосредственно к примерам.
Ваш базовый компонент react с typescript
Как же выглядит стандартный компонент react на typescript? Давайте сравним его с компонентом react в javascript.
import React from 'react'
import PropTypes from 'prop-types'
export function StandardComponent({ children, title = 'Dr.' }) {
return (
<div>
{title}: {children}
</div>
)
}
StandardComponent.propTypes = {
title: PropTypes.string,
children: PropTypes.node.isRequired,
}
А теперь версия на typescript:
import * as React from 'react'
export interface StandardComponentProps {
title?: string
children: React.ReactNode
}
export function StandardComponent({
children,
title = 'Dr.',
}: StandardComponentProps) {
return (
<div>
{title}: {children}
</div>
)
}
Очень похоже, не так ли? Мы заменили propTypes
на интерфейс typescript
.
Заголовок prop
остается необязательным, в то время как все еще требуется prop наследника. Мы экспортировали наш интерфейс на случай, если другому компоненту понадобится на него ссылка.
Расширение стандартных атрибутов HTML
Если мы хотим, чтобы родительский компонент мог обеспечивать дополнительные типизированные атрибуты div
, такие как aria-hidden
, style
или className
, мы можем определить их в interface
или же расширить встроенный интерфейс. В приведенном ниже примере, мы говорим, что наш компонент принимает любые стандартные свойства div
в дополнение к заголовку и наследникам.
import * as React from 'react'
export interface SpreadingExampleProps
extends React.HTMLAttributes<HTMLDivElement> {
title?: string
children: React.ReactNode
}
export function SpreadingExample({
children,
title = 'Dr.',
...other
}: SpreadingExampleProps) {
return (
<div {...other}>
{title}: {children}
</div>
)
}
Обработка событий
Мы можем типизировать обработчики событий, чтобы убедиться, что аргумент события имеет правильный тип. Пример ниже демонстрирует различные способы достижения этой цели:
export interface EventHandlerProps {
onClick: (e: React.MouseEvent) => void
}
export function EventHandler({ onClick }: EventHandlerProps) {
// handle focus events in a separate function
function onFocus(e: React.FocusEvent) {
console.log('Focused!', e.currentTarget)
}
return (
<button
onClick={onClick}
onFocus={onFocus}
onKeyDown={e => {
// When using an inline function, the appropriate argument signature
// is provided for us
}}
>
Click me!
</button>
)
}
Не знаете, какую сигнатуру аргумента использовать? В редакторе наведите курсором на соответствующее свойство обработчика событий.
Использование дженериков с компонентами react
Это более продвинутая функция, но она действительно мощная. Как правило, вы определяете типы данных в компонентах react конкретными атрибутами. Предположим, вашему компоненту требуется объект profile
.
interface ProfileType {
name: string
image: string
age: number | null
}
interface ProfilesProps {
profiles: Array<ProfileType>
}
function Profiles(props: ProfilesProps) {
// render a set of profiles
}
А теперь давайте представим, что у вас есть компонент, который может принимать массив любого типа. Дженерики похожи на отправку посылки по почте. Курьер (наш компонент) не должен знать содержимое посылки, которую вы отправляете, но отправитель (родительский компонент) ожидает, что получатель получит содержимое, которое он отправил.
Мы реализуем это так:
interface GenericsExampleProps<T> {
children: (item: T) => React.ReactNode
items: Array<T>
}
export function GenericsExample<T>({
items,
children,
}: GenericsExampleProps<T>) {
return (
<div>
{items.map(item => {
return children(item)
})}
</div>
)
}
Немного странный пример… тем не менее он демонстрирует суть. Компонент принимает массив элементов любого типа, проходит по нему и вызывает функцию children
как рендер функцию с элементом массива. Когда наш родительский компонент предоставляет колбэк рендера как наследника, элемент будет типизирован правильно!
Не поняли? Это нормально. Я сам еще не разобрался с дженериками до конца, но вам вряд ли понадобится понимать их досконально. Однако, чем больше вы будете работать с typescript
, тем больше в этом будет смысла.
Типизация хуков (hooks)
Хуки в основном работают из коробки. Двумя исключениями могут быть только useRef
и useReducer
. Пример ниже показывает, как мы можем типизировать ссылки (refs).
import * as React from 'react'
interface HooksExampleProps {}
export function HooksExample(props: HooksExampleProps) {
const [count, setCount] = React.useState(0)
const ref = React.useRef<HTMLDivElement | null>(null)
// start our timer
React.useEffect(
() => {
const timer = setInterval(() => {
setCount(count + 1)
}, 1000)
return () => clearTimeout(timer)
},
[count]
)
// measure our element
React.useEffect(
() => {
if (ref.current) {
console.log(ref.current.getBoundingClientRect())
}
},
[ref]
)
return <div ref={ref}>Count: {count}</div>
}
Наше состояние автоматически типизируется, но мы вручную типизировали ref, чтобы показать, что он будет иметь значение null
или содержать элемент div
. Когда мы обращаемся к ref в функции useEffect
, нам нужно убедиться, что он не равен null
.
Типизация редуктора
С редуктором немного сложнее, но если он правильно типизирован, то это замечательно.
// Yeah, I don't understand this either. But it gives us nice typing
// for our reducer actions.
type Action<K, V = void> = V extends void ? { type: K } : { type: K } & V
// our search response type
interface Response {
id: number
title: string
}
// reducer actions. These are what you'll "dispatch"
export type ActionType =
| Action<'QUERY', { value: string }>
| Action<'SEARCH', { value: Array<Response> }>
// the form that our reducer state takes
interface StateType {
searchResponse: Array<Response>
query: string
}
// our default state
const initialState: StateType = {
searchResponse: [],
query: '',
}
// the actual reducer
function reducer(state: StateType, action: ActionType) {
switch (action.type) {
case 'QUERY':
return {
...state,
query: action.value,
}
case 'SEARCH':
return {
...state,
searchResponse: action.value,
}
}
}
interface ReducerExampleProps {
query: string
}
export function ReducerExample({ query }: ReducerExampleProps) {
const [state, dispatch] = React.useReducer(reducer, initialState)
React.useEffect(
() => {
if (query) {
// emulate async query
setTimeout(() => {
dispatch({
type: 'SEARCH',
value: [{ id: 1, title: 'Hello world' }],
})
}, 1000)
}
},
[query]
)
return state.searchResponse.map(response => (
<div key={response.id}>{response.title}</div>
))
}
Использование typeof
и keyof
чтобы типизировать варианты компонента
Предположим, что нам нужна кнопка, которая может иметь различный внешний вид, каждый из которых определен в объекте с набором ключей и стилей, например:
const styles = {
primary: {
color: 'blue',
},
danger: {
color: 'red',
},
}
Наш компонент кнопки должен принимать свойство type
, которое может быть
любым ключом из объекта styles
(например, «primary» или «danger»). Мы можем типизировать его достаточно просто:
const styles = {
primary: {
color: 'blue',
},
danger: {
color: 'red',
},
}
// creates a reusable type from the styles object
type StylesType = typeof styles
// ButtonType = any key in styles
export type ButtonType = keyof StylesType
interface ButtonProps {
type: ButtonType
}
export function Button({ type = 'primary' }: ButtonProps) {
return <button style={styles[type]}>My styled button</button>
}
Эти примеры помогут вам пройти 80% пути. Если вы застряли, то очень часто стоит
просто взглянуть на существующие примеры с открытым исходным кодом.
Sancho UI — это набор компонентов react,
построенный с помощью typescript и emotion.
Blueprint — это еще один набор компонентов
react
, построенный на typescript
.
Ну и по устоявшейся традиции ждем ваши комментарии.
React – это JavaScript-библиотека с открытым исходным кодом для создания пользовательских интерфейсов, а TypeScript – типизированное надмножество JavaScript. Объединяя их, мы создаем пользовательские интерфейсы, используя типизированную версию JavaScript. Это означает большую безопасность и меньшее количество ошибок, отправляемых во внешний интерфейс.
Не существует единственного правильного способа написания кода React с использованием TypeScript. Как и в случае с другими технологиями, если ваш код компилируется и работает, вы, вероятно, что-то сделали правильно.
Подготовка компонентов к совместному использованию с помощью TypeScript
Bit.dev стал популярной альтернативой традиционным библиотекам компонентов, поскольку он предлагает способ собрать и поделиться отдельными компонентами из любой кодовой базы.
Создавая проекты с использованием React с TS, вы убедитесь, что ваши компоненты легко понятны другим разработчикам. Это отличный способ написать поддерживаемый код и оптимизировать совместную работу команды.
Настройка проекта и tsconfig.json
Самый быстрый способ запустить приложение React/TypeScript – использовать create-react-app
с шаблоном TypeScript:
npx create-react-app my-app --template typescript
tsconfig.json
это файл конфигурации TypeScript. Файл содержит первоначальные настройки, ниже приведем несколько параметров с пояснениями:
{
"compilerOptions": {
"target": "es5", // Укажите целевую версию ECMAScript
"lib": [
"dom",
"dom.iterable",
"esnext"
], // Список файлов библиотеки для включения в компиляцию
"allowJs": true, // Разрешить компиляцию файлов JavaScript
"skipLibCheck": true, // Пропустить проверку типов всех файлов объявлений
"esModuleInterop": true, // Отключает импорт пространства имен (импорт * как fs из "fs") и включает импорт в стиле CJS / AMD / UMD (импорт fs из "fs")
"allowSyntheticDefaultImports": true, // Разрешить импорт по умолчанию из модулей без экспорта по умолчанию
"strict": true, // Включить все параметры строгой проверки типов
"forceConsistentCasingInFileNames": true, // Запрещаем ссылки с несогласованным регистром на один и тот же файл.
"module": "esnext", // Указываем генерацию кода модуля
"moduleResolution": "node", // Разрешить модули в стиле Node.js
"isolatedModules": true, // Безоговорочно генерировать импорт для неразрешенных файлов
"resolveJsonModule": true, // Включить модули, импортированные с расширением .json
"noEmit": true, // Не выводить вывод (то есть не компилировать код, а только выполнять проверку типа)
"jsx": "react", // Поддержка JSX в файлах .tsx
"sourceMap": true, // Создание соответствующего файла .map
"declaration": true, // Создаем соответствующий файл .d.ts
"noUnusedLocals": true, // Сообщать об ошибках на неиспользуемых локальных объектах
"noUnusedParameters": true, // Сообщаем об ошибках неиспользуемых параметров
"incremental": true, // Включить инкрементную компиляцию путем чтения/записи информации из предыдущих компиляций в файл на диске
"noFallthroughCasesInSwitch": true // Сообщать об ошибках для случаев падения в инструкции switch
},
"include": [
"src/**/*" // *** Файлы TypeScript должны ввести проверку ***
],
"exclude": ["node_modules", "build"] // *** Файлы, которые не нужно вводить, проверять ***
}
Дополнительные рекомендации исходят от сообщества response-typescript-cheatsheet, а объяснения взяты из документации по параметрам компилятора в официальном справочнике TypeScript.
Enums
Enums определяет набор связанных констант как часть единой сущности.
//...
/** A set of groupped constants */
enum SelectableButtonTypes {
Important = "important",
Optional = "optional",
Irrelevant = "irrelevant"
}
interface IButtonProps {
text: string,
/** The type of button, pulled from the Enum SelectableButtonTypes */
type: SelectableButtonTypes,
action: (selected: boolean) => void
}
const ExtendedSelectableButton = ({text, type, action}: IButtonProps) => {
let [selected, setSelected] = useState(false)
return (<button className={"extendedSelectableButton " + type + (selected? " selected" : "")} onClick={ _ => {
setSelected(!selected)
action(selected)
}}>{text}</button>)
}
/** Exporting the component AND the Enum */
export { ExtendedSelectableButton, SelectableButtonTypes}
Использование Enums:
import React from 'react';
import './App.css';
import {ExtendedSelectableButton, SelectableButtonTypes} from './components/ExtendedSelectableButton/ExtendedSelectableButton'
const App = () => {
return (
<div className="App">
<header className="App-header">
<ExtendedSelectableButton type={SelectableButtonTypes.Important} text="Select me!!" action={ (selected) => {
console.log(selected)
}} />
</header>
</div>
);
}
export default App;
Интерфейсы и типы
Что следует использовать – интерфейсы или псевдонимы типов? Хотя эти сущности концептуально различны, на деле они очень похожи:
- обе могут быть продлены;
//расширение интерфейсов
interface PartialPointX { x: number; }
interface Point extends PartialPointX { y: number; }
//расширение типов
type PartialPointX = { x: number; };
type Point = PartialPointX & { y: number; };
// Интерфейс расширяет тип
type PartialPointX = { x: number; };
interface Point extends PartialPointX { y: number; }
//Псевдоним типа расширяет интерфейсы
interface PartialPointX { x: number; }
type Point = PartialPointX & { y: number; };
- обе могут использоваться для определения формы объектов;
//определяем интерфейс для объектов
interface Point {
x: number;
y: number;
}
//также используем типы
type Point2 = {
x: number;
y: number;
};
- обе они могут быть реализованы одинаково;
//реализация интерфейса
class SomePoint implements Point {
x: 1;
y: 2;
}
//Реализация псевдонима типа
class SomePoint2 implements Point2 {
x: 1;
y: 2;
}
type PartialPoint = { x: number; } | { y: number; };
// Единственное, что вы не можете сделать: реализовать тип объединения
class SomePartialPoint implements PartialPoint {
x: 1;
y: 2;
}
Единственная функция интерфейсов, которую не делают псевдонимы типов – это объединение деклараций.
Расширение элементов HTML
Иногда ваши компоненты работают как собственные HTML-элементы. В таких случаях лучше определить тип компонента как собственный элемент HTML или его расширение.
function eventHandler(event: React.MouseEvent<HTMLAnchorElement>) {
console.log("TEST!")
}
const ExtendedSelectableButton = ({text, type, action}: IButtonProps) => {
let [selected, setSelected] = useState(false)
return (<button className={"extendedSelectableButton " + type + (selected? " selected" : "")} onClick={eventHandler}>{text}</button>)
}
Типы событий
React имеет собственный набор событий, поэтому вы не можете напрямую использовать события HTML. Однако у вас есть доступ к событиям пользовательского интерфейса. Убедитесь, что ссылаетесь на них напрямую или просто не забудьте импортировать их из React следующим образом:
import React, { Component, MouseEvent } from 'react';
Мы также можем использовать для ограничения элементов Generics с конкретным обработчиком событий.
Также можно применять объединения, чтобы разрешить повторное использование обработчика несколькими компонентами:
/ ** Это позволит вам использовать этот обработчик событий как для якорей, так и для элементов кнопок * /
function eventHandler(event: React.MouseEvent<HTMLAnchorElement | HTMLButtonElement>) {
console.log("TEST!")
}
Определение интегрированного типа
Стоит упомянуть файлы index.d.ts
и global.d.ts
в React. Оба они устанавливаются, когда вы добавляете React в свой проект. Эти файлы содержат определения типов и интерфейсов: чтобы понять свойства или доступность конкретного типа, вы можете открыть эти файлы и просмотреть их содержимое.
Там вы увидете небольшой раздел файла index.d.ts
, показывающий подписи для функции createElement
.
ESLint/Prettier
Чтобы гарантировать, что ваш код соответствует правилам проекта, а стиль согласован, рекомендуется настроить ESLint
и Prettier
:
- Установите необходимые зависимости для разработчиков:
yarn add eslint @typescript-eslint/parser @typescript-eslint/eslint-plugin eslint-plugin-react --dev
- Создайте файл
.eslintrc.js
в корне и добавьте следующее:
module.exports = {
parser: '@typescript-eslint/parser', // Указывает парсер ESLint
extends: [
'plugin:react/recommended', // Использует рекомендуемые правила из @eslint-plugin-react
'plugin:@typescript-eslint/recommended', // Использует рекомендуемые правила из @typescript-eslint/eslint-plugin
],
parserOptions: {
ecmaVersion: 2018, //Позволяет анализировать современные функции ECMAScript
sourceType: 'module', //Разрешает использование импорта
ecmaFeatures: {
jsx: true, // Разрешает анализ JSX
},
},
rules: {
// Место для указания правил ESLint. Может использоваться для перезаписи правил, указанных в расширенных конфигах
// например "@ typescript-eslint / явный-возвращаемый-тип-функции": "выкл.",
},
settings: {
react: {
version: 'detect', // Указывает eslint-plugin-react автоматически определять версию React для использования
},
},
};
- Добавьте зависимости Prettier:
yarn add prettier eslint-config-prettier eslint-plugin-prettier --dev
- Создайте файл
.prettierrc.js
в корне и добавьте в него следующий код:
module.exports = {
semi: true,
trailingComma: 'all',
singleQuote: true,
printWidth: 120,
tabWidth: 4,
};
- Обновите файл
.eslintrc.js
:
module.exports = {
parser: '@typescript-eslint/parser', // Задает парсер ESLint
extends: [
'plugin:react/recommended', // Использует рекомендуемые правила из @ eslint-plugin-react
'plugin:@typescript-eslint/recommended', // Использует рекомендуемые правила из @typescript-eslint/eslint-plugin
+ 'prettier/@typescript-eslint', // Использует eslint-config-prettier для отключения правил ESLint из @typescript-eslint/eslint-plugin, которые будут конфликтовать с prettier
+ 'plugin:prettier/recommended', // Включает eslint-plugin-prettier и отображает более красивые ошибки как ошибки ESLint. Убедитесь, что это всегда последняя конфигурация в массиве extends.
],
parserOptions: {
ecmaVersion: 2018, // Позволяет анализировать современные функции ECMAScript
sourceType: 'module', // Разрешает использование импорта
ecmaFeatures: {
jsx: true, //Разрешает анализ JSX
},
},
rules: {
// Место для указания правил ESLint. Может использоваться для перезаписи правил, указанных в расширенных конфигах
// например "@typescript-eslint/явный-тип-возврата-функции": "выкл.",
},
settings: {
react: {
version: 'detect', // Указывает eslint-plugin-react автоматически определять версию React для использования
},
},
};
Расширения и настройки кода VS
Следующий шаг по улучшению – автоматическое исправление и предварительная настройка кода при сохранении.
Установите ESLint и Prettier для VS Code. Это позволит ESLint легко интегрироваться с вашим редактором.
Затем обновите настройки, добавив следующий код в свой .vscode/settings.json
:
{
"editor.formatOnSave": true
}
Хуки
Хуки, вроде useState
, получают параметр и правильно возвращают состояние и функцию для его установки.
Вы можете принудительно установить тип или интерфейс начального значения состояния, например, так:
const [user, setUser] = React.useState<IUser>(user);
Однако, если начальное значение для вашего хука потенциально может быть null, то приведенный выше код не сработает. Для этих случаев TypeScript позволяет установить дополнительный тип:
const [user, setUser] = React.useState<IUser | null>(null);
// later...
setUser(newUser);
Обработка событий формы
Один из наиболее распространенных случаев – это правильный ввод using
в поле ввода onChange
. Вот пример:
import React from 'react'
const MyInput = () => {
const [value, setValue] = React.useState('')
// The event type is a "ChangeEvent"
// We pass in "HTMLInputElement" to the input
function onChange(e: React.ChangeEvent<HTMLInputElement>) {
setValue(e.target.value)
}
return <input value={value} onChange={onChange} id="input-example"/>
}
Расширение свойств компонентов
Можно расширить свойства, объявленные для одного компонента, и задействовать их в другом. Давайте сначала посмотрим, как использовать type:
import React from 'react';
type ButtonProps = {
/** the background color of the button */
color: string;
/** the text to show inside the button */
text: string;
}
type ContainerProps = ButtonProps & {
/** the height of the container (value used with 'px') */
height: number;
}
const Container: React.FC<ContainerProps> = ({ color, height, width, text }) => {
return <div style={{ backgroundColor: color, height: `${height}px` }}>{text}</div>
}
Если вы использовали interface, то можно применить extends, чтобы расширить его, но придется внести пару изменений:
import React from 'react';
interface ButtonProps {
/** the background color of the button */
color: string;
/** the text to show inside the button */
text: string;
}
interface ContainerProps extends ButtonProps {
/** the height of the container (value used with 'px') */
height: number;
}
const Container: React.FC<ContainerProps> = ({ color, height, width, text }) => {
return <div style={{ backgroundColor: color, height: `${height}px` }}>{text}</div>
}
Сторонние библиотеки
Мы часто включаем сторонние библиотеки в проекты React и TypeScript. В таких случаях стоит посмотреть, есть ли пакет @types
с определениями типов:
#yarn
yarn add @types/<package-name>
#npm
npm install @types/<package-name>
Пространство имен @types
зарезервировано для определений типов пакетов. Они живут в репозитории под названием DefinitherTyped
, который частично поддерживается командой TypeScript, а частично – сообществом.
Итоги
Совместное использование React и TypeScript требует некоторого обучения из-за объема информации, но в долгосрочной перспективе затраты времени окупаются. В своей публикации мы опирались на лучшие практики из статей Джо Превайта, Фернандо Дольо и Мартина Хохеля. Мы постарались осветить самые полезные приемы и моменты, которые помогут использовать TypeScript как часть инструментальной цепочки React. Больше информации вы найдете в официальном справочнике к TypeScript или в публикациях «Библиотеки программиста».
React+TypeScript Cheatsheets
Cheatsheets for experienced React developers getting started with TypeScript
Web docs |
Español |
Português |
Contribute! |
Ask!
👋 This repo is maintained by @swyx, @eps1lon and @filiptammergard. We’re so happy you want to try out TypeScript with React! If you see anything wrong or missing, please file an issue! 👍
| |
All React + TypeScript Cheatsheets
- The Basic Cheatsheet is focused on helping React devs just start using TS in React apps
- Focus on opinionated best practices, copy+pastable examples.
- Explains some basic TS types usage and setup along the way.
- Answers the most Frequently Asked Questions.
- Does not cover generic type logic in detail. Instead we prefer to teach simple troubleshooting techniques for newbies.
- The goal is to get effective with TS without learning too much TS.
- The Advanced Cheatsheet helps show and explain advanced usage of generic types for people writing reusable type utilities/functions/render prop/higher order components and TS+React libraries.
- It also has miscellaneous tips and tricks for pro users.
- Advice for contributing to DefinitelyTyped.
- The goal is to take full advantage of TypeScript.
- The Migrating Cheatsheet helps collate advice for incrementally migrating large codebases from JS or Flow, from people who have done it.
- We do not try to convince people to switch, only to help people who have already decided.
- ⚠️This is a new cheatsheet, all assistance is welcome.
- The HOC Cheatsheet) specifically teaches people to write HOCs with examples.
- Familiarity with Generics is necessary.
- ⚠️This is the newest cheatsheet, all assistance is welcome.
Basic Cheatsheet
Basic Cheatsheet Table of Contents
Expand Table of Contents
-
Section 1: Setup TypeScript with React
- Prerequisites
- React and TypeScript starter kits
- Try React and TypeScript online
-
Section 2: Getting Started
- Function Components
- Hooks
- useState
- useReducer
- useEffect / useLayoutEffect
- useRef
- Option 1: DOM element ref
- Option 2: Mutable value ref
- See also
- useImperativeHandle
- Custom Hooks
- More Hooks + TypeScript reading:
- Example React Hooks + TypeScript Libraries:
- Class Components
- Typing getDerivedStateFromProps
- You May Not Need
defaultProps
- Typing
defaultProps
- Consuming Props of a Component with defaultProps
- Problem Statement
- Solution
- Misc Discussions and Knowledge
- Typing Component Props
- Basic Prop Types Examples
- Useful React Prop Type Examples
- Types or Interfaces?
- TL;DR
- More Advice
- Useful table for Types vs Interfaces
-
getDerivedStateFromProps
-
Forms and Events
-
List of event types
-
Context
-
Basic Example
-
Extended Example
-
forwardRef/createRef
-
Generic forwardRefs
-
Option 1 — Wrapper component
-
Option 2 — Redeclare forwardRef
-
More Info
-
Portals
-
Error Boundaries
-
Option 1: Using react-error-boundary
-
Options 2: Writing your custom error boundary component
-
Concurrent React/React Suspense
-
Troubleshooting Handbook: Types
- Union Types and Type Guarding
- Optional Types
- Enum Types
- Type Assertion
- Simulating Nominal Types
- Intersection Types
- Union Types
- Overloading Function Types
- Using Inferred Types
- Using Partial Types
- The Types I need weren’t exported!
- The Types I need don’t exist!
- Slapping
any
on everything - Autogenerate types
- Typing Exported Hooks
- Typing Exported Components
- Slapping
- Frequent Known Problems with TypeScript
- TypeScript doesn’t narrow after an object element null check
- TypeScript doesn’t let you restrict the type of children
-
Troubleshooting Handbook: Operators
-
Troubleshooting Handbook: Utilities
-
Troubleshooting Handbook: tsconfig.json
-
Troubleshooting Handbook: Fixing bugs in official typings
-
Troubleshooting Handbook: Globals, Images and other non-TS files
-
Editor Tooling and Integration
-
Linting
-
Other React + TypeScript resources
-
Recommended React + TypeScript talks
-
Time to Really Learn TypeScript
-
Example App
Section 1: Setup
Prerequisites
You can use this cheatsheet for reference at any skill level, but basic understanding of React and TypeScript is assumed. Here is a list of prerequisites:
- Basic understanding of React.
- Familiarity with TypeScript Basics and Everyday Types.
In the cheatsheet we assume you are using the latest versions of React and TypeScript.
React and TypeScript starter kits
React has documentation for how to start a new React project with some of the most popular frameworks. Here’s how to start them with TypeScript:
- Next.js:
npx create-next-app@latest --ts
- Remix:
npx create-remix@latest
- Gatsby:
npm init gatsby --ts
- Expo:
npx create-react-native-app -t with-typescript
Try React and TypeScript online
There are some tools that let you run React and TypeScript online, which can be helpful for debugging or making sharable reproductions.
- TypeScript playground
- StackBlitz
- CodeSandbox
Section 2: Getting Started
Function Components
These can be written as normal functions that take a props
argument and return a JSX element.
// Declaring type of props - see "Typing Component Props" for more examples type AppProps = { message: string; }; /* use `interface` if exporting so that consumers can extend */ // Easiest way to declare a Function Component; return type is inferred. const App = ({ message }: AppProps) => <div>{message}</div>; // you can choose annotate the return type so an error is raised if you accidentally return some other type const App = ({ message }: AppProps): JSX.Element => <div>{message}</div>; // you can also inline the type declaration; eliminates naming the prop types, but looks repetitive const App = ({ message }: { message: string }) => <div>{message}</div>;
Tip: You might use Paul Shen’s VS Code Extension to automate the type destructure declaration (incl a keyboard shortcut).
Why is React.FC
discouraged? What about React.FunctionComponent
/React.VoidFunctionComponent
?
You may see this in many React+TypeScript codebases:
const App: React.FunctionComponent<{ message: string }> = ({ message }) => ( <div>{message}</div> );
However, the general consensus today is that React.FunctionComponent
(or the shorthand React.FC
) is discouraged. This is a nuanced opinion of course, but if you agree and want to remove React.FC
from your codebase, you can use this jscodeshift codemod.
Some differences from the «normal function» version:
-
React.FunctionComponent
is explicit about the return type, while the normal function version is implicit (or else needs additional annotation). -
It provides typechecking and autocomplete for static properties like
displayName
,propTypes
, anddefaultProps
.- Note that there are some known issues using
defaultProps
withReact.FunctionComponent
. See this issue for details. We maintain a separatedefaultProps
section you can also look up.
- Note that there are some known issues using
-
Before the React 18 type updates,
React.FunctionComponent
provided an implicit definition ofchildren
(see below), which was heavily debated and is one of the reasonsReact.FC
was removed from the Create React App TypeScript template.
// before React 18 types const Title: React.FunctionComponent<{ title: string }> = ({ children, title, }) => <div title={title}>{children}</div>;
(Deprecated)Using React.VoidFunctionComponent
or React.VFC
instead
In @types/react 16.9.48, the React.VoidFunctionComponent
or React.VFC
type was added for typing children
explicitly.
However, please be aware that React.VFC
and React.VoidFunctionComponent
were deprecated in React 18 (DefinitelyTyped/DefinitelyTyped#59882), so this interim solution is no longer necessary or recommended in React 18+.
Please use regular function components or React.FC
instead.
type Props = { foo: string }; // OK now, in future, error const FunctionComponent: React.FunctionComponent<Props> = ({ foo, children, }: Props) => { return ( <div> {foo} {children} </div> ); // OK }; // Error now, in future, deprecated const VoidFunctionComponent: React.VoidFunctionComponent<Props> = ({ foo, children, }) => { return ( <div> {foo} {children} </div> ); };
- In the future, it may automatically mark props as
readonly
, though that’s a moot point if the props object is destructured in the parameter list.
In most cases it makes very little difference which syntax is used, but you may prefer the more explicit nature of React.FunctionComponent
.
Minor Pitfalls
These patterns are not supported:
Conditional rendering
const MyConditionalComponent = ({ shouldRender = false }) => shouldRender ? <div /> : false; // don't do this in JS either const el = <MyConditionalComponent />; // throws an error
This is because due to limitations in the compiler, function components cannot return anything other than a JSX expression or null
, otherwise it complains with a cryptic error message saying that the other type is not assignable to Element
.
Array.fill
const MyArrayComponent = () => Array(5).fill(<div />); const el2 = <MyArrayComponent />; // throws an error
Unfortunately just annotating the function type will not help so if you really need to return other exotic types that React supports, you’d need to perform a type assertion:
const MyArrayComponent = () => Array(5).fill(<div />) as any as JSX.Element;
See commentary by @ferdaber here.
Hooks
Hooks are supported in @types/react
from v16.8 up.
useState
Type inference works very well for simple values:
const [state, setState] = useState(false); // `state` is inferred to be a boolean // `setState` only takes booleans
See also the Using Inferred Types section if you need to use a complex type that you’ve relied on inference for.
However, many hooks are initialized with null-ish default values, and you may wonder how to provide types. Explicitly declare the type, and use a union type:
const [user, setUser] = useState<User | null>(null); // later... setUser(newUser);
You can also use type assertions if a state is initialized soon after setup and always has a value after:
const [user, setUser] = useState<User>({} as User); // later... setUser(newUser);
This temporarily «lies» to the TypeScript compiler that {}
is of type User
. You should follow up by setting the user
state — if you don’t, the rest of your code may rely on the fact that user
is of type User
and that may lead to runtime errors.
useCallback
You can type the useCallback
just like any other function.
const memoizedCallback = useCallback( (param1: string, param2: number) => { console.log(param1, param2) return { ok: true } }, [...], ); /** * VSCode will show the following type: * const memoizedCallback: * (param1: string, param2: number) => { ok: boolean } */
Note that for React < 18, the function signature of useCallback
typed arguments as any[]
by default:
function useCallback<T extends (...args: any[]) => any>( callback: T, deps: DependencyList ): T;
In React >= 18, the function signature of useCallback
changed to the following:
function useCallback<T extends Function>(callback: T, deps: DependencyList): T;
Therefore, the following code will yield «Parameter 'e' implicitly has an 'any' type.
» error in React >= 18, but not <17.
// @ts-expect-error Parameter 'e' implicitly has 'any' type. useCallback((e) => {}, []); // Explicit 'any' type. useCallback((e: any) => {}, []);
useReducer
You can use Discriminated Unions for reducer actions. Don’t forget to define the return type of reducer, otherwise TypeScript will infer it.
import { useReducer } from "react"; const initialState = { count: 0 }; type ACTIONTYPE = | { type: "increment"; payload: number } | { type: "decrement"; payload: string }; function reducer(state: typeof initialState, action: ACTIONTYPE) { switch (action.type) { case "increment": return { count: state.count + action.payload }; case "decrement": return { count: state.count - Number(action.payload) }; default: throw new Error(); } } function Counter() { const [state, dispatch] = useReducer(reducer, initialState); return ( <> Count: {state.count} <button onClick={() => dispatch({ type: "decrement", payload: "5" })}> - </button> <button onClick={() => dispatch({ type: "increment", payload: 5 })}> + </button> </> ); }
View in the TypeScript Playground
Usage with Reducer
from redux
In case you use the redux library to write reducer function, It provides a convenient helper of the format Reducer<State, Action>
which takes care of the return type for you.
So the above reducer example becomes:
import { Reducer } from 'redux'; export function reducer: Reducer<AppState, Action>() {}
useEffect / useLayoutEffect
Both of useEffect
and useLayoutEffect
are used for performing side effects and return an optional cleanup function which means if they don’t deal with returning values, no types are necessary. When using useEffect
, take care not to return anything other than a function or undefined
, otherwise both TypeScript and React will yell at you. This can be subtle when using arrow functions:
function DelayedEffect(props: { timerMs: number }) { const { timerMs } = props; useEffect( () => setTimeout(() => { /* do stuff */ }, timerMs), [timerMs] ); // bad example! setTimeout implicitly returns a number // because the arrow function body isn't wrapped in curly braces return null; }
Solution to the above example
function DelayedEffect(props: { timerMs: number }) { const { timerMs } = props; useEffect(() => { setTimeout(() => { /* do stuff */ }, timerMs); }, [timerMs]); // better; use the void keyword to make sure you return undefined return null; }
useRef
In TypeScript, useRef
returns a reference that is either read-only or mutable, depends on whether your type argument fully covers the initial value or not. Choose one that suits your use case.
Option 1: DOM element ref
To access a DOM element: provide only the element type as argument, and use null
as initial value. In this case, the returned reference will have a read-only .current
that is managed by React. TypeScript expects you to give this ref to an element’s ref
prop:
function Foo() { // - If possible, prefer as specific as possible. For example, HTMLDivElement // is better than HTMLElement and way better than Element. // - Technical-wise, this returns RefObject<HTMLDivElement> const divRef = useRef<HTMLDivElement>(null); useEffect(() => { // Note that ref.current may be null. This is expected, because you may // conditionally render the ref-ed element, or you may forget to assign it if (!divRef.current) throw Error("divRef is not assigned"); // Now divRef.current is sure to be HTMLDivElement doSomethingWith(divRef.current); }); // Give the ref to an element so React can manage it for you return <div ref={divRef}>etc</div>; }
If you are sure that divRef.current
will never be null, it is also possible to use the non-null assertion operator !
:
const divRef = useRef<HTMLDivElement>(null!); // Later... No need to check if it is null doSomethingWith(divRef.current);
Note that you are opting out of type safety here — you will have a runtime error if you forget to assign the ref to an element in the render, or if the ref-ed element is conditionally rendered.
Tip: Choosing which HTMLElement
to use
Refs demand specificity — it is not enough to just specify any old HTMLElement
. If you don’t know the name of the element type you need, you can check lib.dom.ts or make an intentional type error and let the language service tell you:
Option 2: Mutable value ref
To have a mutable value: provide the type you want, and make sure the initial value fully belongs to that type:
function Foo() { // Technical-wise, this returns MutableRefObject<number | null> const intervalRef = useRef<number | null>(null); // You manage the ref yourself (that's why it's called MutableRefObject!) useEffect(() => { intervalRef.current = setInterval(...); return () => clearInterval(intervalRef.current); }, []); // The ref is not passed to any element's "ref" prop return <button onClick={/* clearInterval the ref */}>Cancel timer</button>; }
See also
- Related issue by @rajivpunjabi — Playground
- Example from Stefan Baumgartner — Playground
useImperativeHandle
Based on this Stackoverflow answer:
// Countdown.tsx // Define the handle types which will be passed to the forwardRef export type CountdownHandle = { start: () => void; }; type CountdownProps = {}; const Countdown = forwardRef<CountdownHandle, CountdownProps>((props, ref) => { useImperativeHandle(ref, () => ({ // start() has type inference here start() { alert("Start"); }, })); return <div>Countdown</div>; });
// The component uses the Countdown component import Countdown, { CountdownHandle } from "./Countdown.tsx"; function App() { const countdownEl = useRef<CountdownHandle>(null); useEffect(() => { if (countdownEl.current) { // start() has type inference here as well countdownEl.current.start(); } }, []); return <Countdown ref={countdownEl} />; }
See also:
- Using ForwardRefRenderFunction
Custom Hooks
If you are returning an array in your Custom Hook, you will want to avoid type inference as TypeScript will infer a union type (when you actually want different types in each position of the array). Instead, use TS 3.4 const assertions:
import { useState } from "react"; export function useLoading() { const [isLoading, setState] = useState(false); const load = (aPromise: Promise<any>) => { setState(true); return aPromise.finally(() => setState(false)); }; return [isLoading, load] as const; // infers [boolean, typeof load] instead of (boolean | typeof load)[] }
View in the TypeScript Playground
This way, when you destructure you actually get the right types based on destructure position.
Alternative: Asserting a tuple return type
If you are having trouble with const assertions, you can also assert or define the function return types:
import { useState } from "react"; export function useLoading() { const [isLoading, setState] = useState(false); const load = (aPromise: Promise<any>) => { setState(true); return aPromise.finally(() => setState(false)); }; return [isLoading, load] as [ boolean, (aPromise: Promise<any>) => Promise<any> ]; }
A helper function that automatically types tuples can also be helpful if you write a lot of custom hooks:
function tuplify<T extends any[]>(...elements: T) { return elements; } function useArray() { const numberValue = useRef(3).current; const functionValue = useRef(() => {}).current; return [numberValue, functionValue]; // type is (number | (() => void))[] } function useTuple() { const numberValue = useRef(3).current; const functionValue = useRef(() => {}).current; return tuplify(numberValue, functionValue); // type is [number, () => void] }
Note that the React team recommends that custom hooks that return more than two values should use proper objects instead of tuples, however.
More Hooks + TypeScript reading:
- https://medium.com/@jrwebdev/react-hooks-in-typescript-88fce7001d0d
- https://fettblog.eu/typescript-react/hooks/#useref
If you are writing a React Hooks library, don’t forget that you should also expose your types for users to use.
Example React Hooks + TypeScript Libraries:
- https://github.com/mweststrate/use-st8
- https://github.com/palmerhq/the-platform
- https://github.com/sw-yx/hooks
Something to add? File an issue.
Class Components
Within TypeScript, React.Component
is a generic type (aka React.Component<PropType, StateType>
), so you want to provide it with (optional) prop and state type parameters:
type MyProps = { // using `interface` is also ok message: string; }; type MyState = { count: number; // like this }; class App extends React.Component<MyProps, MyState> { state: MyState = { // optional second annotation for better type inference count: 0, }; render() { return ( <div> {this.props.message} {this.state.count} </div> ); } }
View in the TypeScript Playground
Don’t forget that you can export/import/extend these types/interfaces for reuse.
Why annotate state
twice?
It isn’t strictly necessary to annotate the state
class property, but it allows better type inference when accessing this.state
and also initializing the state.
This is because they work in two different ways, the 2nd generic type parameter will allow this.setState()
to work correctly, because that method comes from the base class, but initializing state
inside the component overrides the base implementation so you have to make sure that you tell the compiler that you’re not actually doing anything different.
See commentary by @ferdaber here.
No need for readonly
You often see sample code include readonly
to mark props and state immutable:
type MyProps = { readonly message: string; }; type MyState = { readonly count: number; };
This is not necessary as React.Component<P,S>
already marks them as immutable. (See PR and discussion!)
Class Methods: Do it like normal, but just remember any arguments for your functions also need to be typed:
class App extends React.Component<{ message: string }, { count: number }> { state = { count: 0 }; render() { return ( <div onClick={() => this.increment(1)}> {this.props.message} {this.state.count} </div> ); } increment = (amt: number) => { // like this this.setState((state) => ({ count: state.count + amt, })); }; }
View in the TypeScript Playground
Class Properties: If you need to declare class properties for later use, just declare it like state
, but without assignment:
class App extends React.Component<{ message: string; }> { pointer: number; // like this componentDidMount() { this.pointer = 3; } render() { return ( <div> {this.props.message} and {this.pointer} </div> ); } }
View in the TypeScript Playground
Something to add? File an issue.
Typing getDerivedStateFromProps
Before you start using getDerivedStateFromProps
, please go through the documentation and You Probably Don’t Need Derived State. Derived State can be implemented using hooks which can also help set up memoization.
Here are a few ways in which you can annotate getDerivedStateFromProps
- If you have explicitly typed your derived state and want to make sure that the return value from
getDerivedStateFromProps
conforms to it.
class Comp extends React.Component<Props, State> { static getDerivedStateFromProps( props: Props, state: State ): Partial<State> | null { // } }
- When you want the function’s return value to determine your state.
class Comp extends React.Component< Props, ReturnType<typeof Comp["getDerivedStateFromProps"]> > { static getDerivedStateFromProps(props: Props) {} }
- When you want derived state with other state fields and memoization
type CustomValue = any; interface Props { propA: CustomValue; } interface DefinedState { otherStateField: string; } type State = DefinedState & ReturnType<typeof transformPropsToState>; function transformPropsToState(props: Props) { return { savedPropA: props.propA, // save for memoization derivedState: props.propA, }; } class Comp extends React.PureComponent<Props, State> { constructor(props: Props) { super(props); this.state = { otherStateField: "123", ...transformPropsToState(props), }; } static getDerivedStateFromProps(props: Props, state: State) { if (isEqual(props.propA, state.savedPropA)) return null; return transformPropsToState(props); } }
View in the TypeScript Playground
You May Not Need defaultProps
As per this tweet, defaultProps will eventually be deprecated. You can check the discussions here:
- Original tweet
- More info can also be found in this article
The consensus is to use object default values.
Function Components:
type GreetProps = { age?: number }; const Greet = ({ age = 21 }: GreetProps) => // etc
Class Components:
type GreetProps = { age?: number; }; class Greet extends React.Component<GreetProps> { render() { const { age = 21 } = this.props; /*...*/ } } let el = <Greet age={3} />;
Typing defaultProps
Type inference improved greatly for defaultProps
in TypeScript 3.0+, although some edge cases are still problematic.
Function Components
// using typeof as a shortcut; note that it hoists! // you can also declare the type of DefaultProps if you choose // e.g. https://github.com/typescript-cheatsheets/react/issues/415#issuecomment-841223219 type GreetProps = { age: number } & typeof defaultProps; const defaultProps = { age: 21, }; const Greet = (props: GreetProps) => { // etc }; Greet.defaultProps = defaultProps;
See this in TS Playground
For Class components, there are a couple ways to do it (including using the Pick
utility type) but the recommendation is to «reverse» the props definition:
type GreetProps = typeof Greet.defaultProps & { age: number; }; class Greet extends React.Component<GreetProps> { static defaultProps = { age: 21, }; /*...*/ } // Type-checks! No type assertions needed! let el = <Greet age={3} />;
JSX.LibraryManagedAttributes
nuance for library authors
The above implementations work fine for App creators, but sometimes you want to be able to export GreetProps
so that others can consume it. The problem here is that the way GreetProps
is defined, age
is a required prop when it isn’t because of defaultProps
.
The insight to have here is that GreetProps
is the internal contract for your component, not the external, consumer facing contract. You could create a separate type specifically for export, or you could make use of the JSX.LibraryManagedAttributes
utility:
// internal contract, should not be exported out type GreetProps = { age: number; }; class Greet extends Component<GreetProps> { static defaultProps = { age: 21 }; } // external contract export type ApparentGreetProps = JSX.LibraryManagedAttributes< typeof Greet, GreetProps >;
This will work properly, although hovering overApparentGreetProps
may be a little intimidating. You can reduce this boilerplate with theComponentProps
utility detailed below.
Consuming Props of a Component with defaultProps
A component with defaultProps
may seem to have some required props that actually aren’t.
Problem Statement
Here’s what you want to do:
interface IProps { name: string; } const defaultProps = { age: 25, }; const GreetComponent = ({ name, age }: IProps & typeof defaultProps) => ( <div>{`Hello, my name is ${name}, ${age}`}</div> ); GreetComponent.defaultProps = defaultProps; const TestComponent = (props: React.ComponentProps<typeof GreetComponent>) => { return <h1 />; }; // Property 'age' is missing in type '{ name: string; }' but required in type '{ age: number; }' const el = <TestComponent name="foo" />;
Solution
Define a utility that applies JSX.LibraryManagedAttributes
:
type ComponentProps<T> = T extends | React.ComponentType<infer P> | React.Component<infer P> ? JSX.LibraryManagedAttributes<T, P> : never; const TestComponent = (props: ComponentProps<typeof GreetComponent>) => { return <h1 />; }; // No error const el = <TestComponent name="foo" />;
See this in TS Playground
Misc Discussions and Knowledge
Why does React.FC
break defaultProps
?
You can check the discussions here:
- https://medium.com/@martin_hotell/10-typescript-pro-tips-patterns-with-or-without-react-5799488d6680
- DefinitelyTyped/DefinitelyTyped#30695
- #87
This is just the current state and may be fixed in future.
TypeScript 2.9 and earlier
For TypeScript 2.9 and earlier, there’s more than one way to do it, but this is the best advice we’ve yet seen:
type Props = Required<typeof MyComponent.defaultProps> & { /* additional props here */ }; export class MyComponent extends React.Component<Props> { static defaultProps = { foo: "foo", }; }
Our former recommendation used the Partial type
feature in TypeScript, which means that the current interface will fulfill a partial version on the wrapped interface. In that way we can extend defaultProps without any changes in the types!
interface IMyComponentProps { firstProp?: string; secondProp: IPerson[]; } export class MyComponent extends React.Component<IMyComponentProps> { public static defaultProps: Partial<IMyComponentProps> = { firstProp: "default", }; }
The problem with this approach is it causes complex issues with the type inference working with JSX.LibraryManagedAttributes
. Basically it causes the compiler to think that when creating a JSX expression with that component, that all of its props are optional.
See commentary by @ferdaber here and here.
Something to add? File an issue.
Typing Component Props
This is intended as a basic orientation and reference for React developers familiarizing with TypeScript.
Basic Prop Types Examples
A list of TypeScript types you will likely use in a React+TypeScript app:
type AppProps = { message: string; count: number; disabled: boolean; /** array of a type! */ names: string[]; /** string literals to specify exact string values, with a union type to join them together */ status: "waiting" | "success"; /** an object with known properties (but could have more at runtime) */ obj: { id: string; title: string; }; /** array of objects! (common) */ objArr: { id: string; title: string; }[]; /** any non-primitive value - can't access any properties (NOT COMMON but useful as placeholder) */ obj2: object; /** an interface with no required properties - (NOT COMMON, except for things like `React.Component<{}, State>`) */ obj3: {}; /** a dict object with any number of properties of the same type */ dict1: { [key: string]: MyTypeHere; }; dict2: Record<string, MyTypeHere>; // equivalent to dict1 /** function that doesn't take or return anything (VERY COMMON) */ onClick: () => void; /** function with named prop (VERY COMMON) */ onChange: (id: number) => void; /** function type syntax that takes an event (VERY COMMON) */ onChange: (event: React.ChangeEvent<HTMLInputElement>) => void; /** alternative function type syntax that takes an event (VERY COMMON) */ onClick(event: React.MouseEvent<HTMLButtonElement>): void; /** any function as long as you don't invoke it (not recommended) */ onSomething: Function; /** an optional prop (VERY COMMON!) */ optional?: OptionalType; /** when passing down the state setter function returned by `useState` to a child component. `number` is an example, swap out with whatever the type of your state */ setState: React.Dispatch<React.SetStateAction<number>>; };
object
as the non-primitive type
object
is a common source of misunderstanding in TypeScript. It does not mean «any object» but rather «any non-primitive type», which means it represents anything that is not number
, string
, boolean
, symbol
, null
or undefined
.
Typing «any non-primitive value» is most likely not something that you should do much in React, which means you will probably not use object
much.
Empty interface, {}
and Object
An empty interface, {}
and Object
all represent «any non-nullish value»—not «an empty object» as you might think. Using these types is a common source of misunderstanding and is not recommended.
interface AnyNonNullishValue {} // equivalent to `type AnyNonNullishValue = {}` or `type AnyNonNullishValue = Object` let value: AnyNonNullishValue; // these are all fine, but might not be expected value = 1; value = "foo"; value = () => alert("foo"); value = {}; value = { foo: "bar" }; // these are errors value = undefined; value = null;
Useful React Prop Type Examples
Relevant for components that accept other React components as props.
export declare interface AppProps { children?: React.ReactNode; // best, accepts everything React can render childrenElement: JSX.Element; // A single React element style?: React.CSSProperties; // to pass through style props onChange?: React.FormEventHandler<HTMLInputElement>; // form events! the generic parameter is the type of event.target // more info: https://react-typescript-cheatsheet.netlify.app/docs/advanced/patterns_by_usecase/#wrappingmirroring props: Props & React.ComponentPropsWithoutRef<"button">; // to impersonate all the props of a button element and explicitly not forwarding its ref props2: Props & React.ComponentPropsWithRef<MyButtonWithForwardRef>; // to impersonate all the props of MyButtonForwardedRef and explicitly forwarding its ref }
Small React.ReactNode
edge case before React 18
Before the React 18 type updates, this code typechecked but had a runtime error:
type Props = { children?: React.ReactNode; }; function Comp({ children }: Props) { return <div>{children}</div>; } function App() { // Before React 18: Runtime error "Objects are not valid as a React child" // After React 18: Typecheck error "Type '{}' is not assignable to type 'ReactNode'" return <Comp>{{}}</Comp>; }
This is because ReactNode
includes ReactFragment
which allowed type {}
before React 18.
Thanks @pomle for raising this.
JSX.Element vs React.ReactNode?
Quote @ferdaber: A more technical explanation is that a valid React node is not the same thing as what is returned by React.createElement
. Regardless of what a component ends up rendering, React.createElement
always returns an object, which is the JSX.Element
interface, but React.ReactNode
is the set of all possible return values of a component.
JSX.Element
-> Return value ofReact.createElement
React.ReactNode
-> Return value of a component
More discussion: Where ReactNode does not overlap with JSX.Element
Something to add? File an issue.
Types or Interfaces?
You can use either Types or Interfaces to type Props and State, so naturally the question arises — which do you use?
TL;DR
Use Interface until You Need Type — orta.
More Advice
Here’s a helpful rule of thumb:
-
always use
interface
for public API’s definition when authoring a library or 3rd party ambient type definitions, as this allows a consumer to extend them via declaration merging if some definitions are missing. -
consider using
type
for your React Component Props and State, for consistency and because it is more constrained.
You can read more about the reasoning behind this rule of thumb in Interface vs Type alias in TypeScript 2.7.
The TypeScript Handbook now also includes guidance on Differences Between Type Aliases and Interfaces.
Note: At scale, there are performance reasons to prefer interfaces (see official Microsoft notes on this) but take this with a grain of salt
Types are useful for union types (e.g. type MyType = TypeA | TypeB
) whereas Interfaces are better for declaring dictionary shapes and then implementing
or extending
them.
Useful table for Types vs Interfaces
It’s a nuanced topic, don’t get too hung up on it. Here’s a handy table:
Aspect | Type | Interface |
---|---|---|
Can describe functions | ✅ | ✅ |
Can describe constructors | ✅ | ✅ |
Can describe tuples | ✅ | ✅ |
Interfaces can extend it | ⚠️ | ✅ |
Classes can extend it | 🚫 | ✅ |
Classes can implement it (implements ) |
⚠️ | ✅ |
Can intersect another one of its kind | ✅ | ⚠️ |
Can create a union with another one of its kind | ✅ | 🚫 |
Can be used to create mapped types | ✅ | 🚫 |
Can be mapped over with mapped types | ✅ | ✅ |
Expands in error messages and logs | ✅ | 🚫 |
Can be augmented | 🚫 | ✅ |
Can be recursive | ⚠️ | ✅ |
⚠️ In some cases
(source: Karol Majewski)
Something to add? File an issue.
getDerivedStateFromProps
Before you start using getDerivedStateFromProps
, please go through the documentation and You Probably Don’t Need Derived State. Derived State can be easily achieved using hooks which can also help set up memoization easily.
Here are a few ways in which you can annotate getDerivedStateFromProps
- If you have explicitly typed your derived state and want to make sure that the return value from
getDerivedStateFromProps
conforms to it.
class Comp extends React.Component<Props, State> { static getDerivedStateFromProps( props: Props, state: State ): Partial<State> | null { // } }
- When you want the function’s return value to determine your state.
class Comp extends React.Component< Props, ReturnType<typeof Comp["getDerivedStateFromProps"]> > { static getDerivedStateFromProps(props: Props) {} }
- When you want derived state with other state fields and memoization
type CustomValue = any; interface Props { propA: CustomValue; } interface DefinedState { otherStateField: string; } type State = DefinedState & ReturnType<typeof transformPropsToState>; function transformPropsToState(props: Props) { return { savedPropA: props.propA, // save for memoization derivedState: props.propA, }; } class Comp extends React.PureComponent<Props, State> { constructor(props: Props) { super(props); this.state = { otherStateField: "123", ...transformPropsToState(props), }; } static getDerivedStateFromProps(props: Props, state: State) { if (isEqual(props.propA, state.savedPropA)) return null; return transformPropsToState(props); } }
View in the TypeScript Playground
Forms and Events
If performance is not an issue (and it usually isn’t!), inlining handlers is easiest as you can just use type inference and contextual typing:
const el = ( <button onClick={(event) => { /* event will be correctly typed automatically! */ }} /> );
But if you need to define your event handler separately, IDE tooling really comes in handy here, as the @type definitions come with a wealth of typing. Type what you are looking for and usually the autocomplete will help you out. Here is what it looks like for an onChange
for a form event:
type State = { text: string; }; class App extends React.Component<Props, State> { state = { text: "", }; // typing on RIGHT hand side of = onChange = (e: React.FormEvent<HTMLInputElement>): void => { this.setState({ text: e.currentTarget.value }); }; render() { return ( <div> <input type="text" value={this.state.text} onChange={this.onChange} /> </div> ); } }
View in the TypeScript Playground
Instead of typing the arguments and return values with React.FormEvent<>
and void
, you may alternatively apply types to the event handler itself (contributed by @TomasHubelbauer):
// typing on LEFT hand side of = onChange: React.ChangeEventHandler<HTMLInputElement> = (e) => { this.setState({text: e.currentTarget.value}) }
Why two ways to do the same thing?
The first method uses an inferred method signature (e: React.FormEvent<HTMLInputElement>): void
and the second method enforces a type of the delegate provided by @types/react
. So React.ChangeEventHandler<>
is simply a «blessed» typing by @types/react
, whereas you can think of the inferred method as more… artisanally hand-rolled. Either way it’s a good pattern to know. See our Github PR for more.
Typing onSubmit, with Uncontrolled components in a Form
If you don’t quite care about the type of the event, you can just use React.SyntheticEvent
. If your target form has custom named inputs that you’d like to access, you can use a type assertion:
<form ref={formRef} onSubmit={(e: React.SyntheticEvent) => { e.preventDefault(); const target = e.target as typeof e.target & { email: { value: string }; password: { value: string }; }; const email = target.email.value; // typechecks! const password = target.password.value; // typechecks! // etc... }} > <div> <label> Email: <input type="email" name="email" /> </label> </div> <div> <label> Password: <input type="password" name="password" /> </label> </div> <div> <input type="submit" value="Log in" /> </div> </form>
View in the TypeScript Playground
Of course, if you’re making any sort of significant form, you should use Formik or React Hook Form, which are written in TypeScript.
List of event types
Event Type | Description |
---|---|
AnimationEvent | CSS Animations. |
ChangeEvent | Changing the value of <input> , <select> and <textarea> element. |
ClipboardEvent | Using copy, paste and cut events. |
CompositionEvent | Events that occur due to the user indirectly entering text (e.g. depending on Browser and PC setup, a popup window may appear with additional characters if you e.g. want to type Japanese on a US Keyboard) |
DragEvent | Drag and drop interaction with a pointer device (e.g. mouse). |
FocusEvent | Event that occurs when elements gets or loses focus. |
FormEvent | Event that occurs whenever a form or form element gets/loses focus, a form element value is changed or the form is submitted. |
InvalidEvent | Fired when validity restrictions of an input fails (e.g <input type="number" max="10"> and someone would insert number 20). |
KeyboardEvent | User interaction with the keyboard. Each event describes a single key interaction. |
MouseEvent | Events that occur due to the user interacting with a pointing device (e.g. mouse) |
PointerEvent | Events that occur due to user interaction with a variety pointing of devices such as mouse, pen/stylus, a touchscreen and which also supports multi-touch. Unless you develop for older browsers (IE10 or Safari 12), pointer events are recommended. Extends UIEvent. |
TouchEvent | Events that occur due to the user interacting with a touch device. Extends UIEvent. |
TransitionEvent | CSS Transition. Not fully browser supported. Extends UIEvent |
UIEvent | Base Event for Mouse, Touch and Pointer events. |
WheelEvent | Scrolling on a mouse wheel or similar input device. (Note: wheel event should not be confused with the scroll event) |
SyntheticEvent | The base event for all above events. Should be used when unsure about event type |
What about InputEvent
?
You’ve probably noticed that there is no InputEvent
. This is because it is not supported by Typescript as the event itself has no fully browser support and may behave differently in different browsers. You can use KeyboardEvent
instead.
Sources:
- microsoft/TypeScript#29441
- https://developer.mozilla.org/en-US/docs/Web/API/InputEvent
- https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/input_event
Context
Basic example
Here’s a basic example of creating a context containing the active theme.
import { createContext } from "react"; type ThemeContextType = "light" | "dark"; const ThemeContext = createContext<ThemeContextType>("light");
Wrap the components that need the context with a context provider:
import { useState } from "react"; const App = () => { const [theme, setTheme] = useState<ThemeContextType>("light"); return ( <ThemeContext.Provider value={theme}> <MyComponent /> </ThemeContext.Provider> ); };
Call useContext
to read and subscribe to the context.
import { useContext } from "react"; const MyComponent = () => { const theme = useContext(ThemeContext); return <p>The current theme is {theme}.</p>; };
Without default context value
If you don’t have any meaningful default value, specify null
:
import { createContext } from "react"; interface CurrentUserContextType { username: string; } const CurrentUserContext = createContext<CurrentUserContextType | null>(null);
const App = () => { const [currentUser, setCurrentUser] = useState<CurrentUserContextType>({ username: "filiptammergard", }); return ( <CurrentUserContext.Provider value={currentUser}> <MyComponent /> </CurrentUserContext.Provider> ); };
Now that the type of the context can be null
, you’ll notice that you’ll get a 'currentUser' is possibly 'null'
TypeScript error if you try to access the username
property. You can use optional chaining to access username
:
import { useContext } from "react"; const MyComponent = () => { const currentUser = useContext(CurrentUserContext); return <p>Name: {currentUser?.username}.</p>; };
However, it would be preferrable to not have to check for null
, since we know that the context won’t be null
. One way to do that is to provide a custom hook to use the context, where an error is thrown if the context is not provided:
import { createContext } from "react"; interface CurrentUserContextType { username: string; } const CurrentUserContext = createContext<CurrentUserContextType | null>(null); const useCurrentUser = () => { const currentUserContext = useContext(CurrentUserContext); if (!currentUserContext) { throw new Error( "useCurrentUser has to be used within <CurrentUserContext.Provider>" ); } return currentUserContext; };
Using a runtime type check in this will has the benefit of printing a clear error message in the console when a provider is not wrapping the components properly. Now it’s possible to access currentUser.username
without checking for null
:
import { useContext } from "react"; const MyComponent = () => { const currentUser = useCurrentUser(); return <p>Username: {currentUser.username}.</p>; };
Type assertion as an alternative
Another way to avoid having to check for null
is to use type assertion to tell TypeScript you know the context is not null
:
import { useContext } from "react"; const MyComponent = () => { const currentUser = useContext(CurrentUserContext); return <p>Name: {currentUser!.username}.</p>; };
Another option is to use an empty object as default value and cast it to the expected context type:
const CurrentUserContext = createContext<CurrentUserContextType>( {} as CurrentUserContextType );
You can also use non-null assertion to get the same result:
const CurrentUserContext = createContext<CurrentUserContextType>(null!);
When you don’t know what to choose, prefer runtime checking and throwing over type asserting.
forwardRef/createRef
Check the Hooks section for useRef
.
createRef
:
import { createRef, PureComponent } from "react"; class CssThemeProvider extends PureComponent<Props> { private rootRef = createRef<HTMLDivElement>(); // like this render() { return <div ref={this.rootRef}>{this.props.children}</div>; } }
forwardRef
:
import { forwardRef, ReactNode } from "react"; interface Props { children?: ReactNode; type: "submit" | "button"; } export type Ref = HTMLButtonElement; export const FancyButton = forwardRef<Ref, Props>((props, ref) => ( <button ref={ref} className="MyClassName" type={props.type}> {props.children} </button> ));
Side note: the ref
you get from forwardRef
is mutable so you can assign to it if needed.
This was done on purpose. You can make it immutable if you have to — assign React.Ref
if you want to ensure nobody reassigns it:
import { forwardRef, ReactNode, Ref } from "react"; interface Props { children?: ReactNode; type: "submit" | "button"; } export const FancyButton = forwardRef( ( props: Props, ref: Ref<HTMLButtonElement> // <-- here! ) => ( <button ref={ref} className="MyClassName" type={props.type}> {props.children} </button> ) );
If you are grabbing the props of a component that forwards refs, use ComponentPropsWithRef
.
Generic forwardRefs
Read more context in https://fettblog.eu/typescript-react-generic-forward-refs/:
Option 1 — Wrapper component
type ClickableListProps<T> = { items: T[]; onSelect: (item: T) => void; mRef?: React.Ref<HTMLUListElement> | null; }; export function ClickableList<T>(props: ClickableListProps<T>) { return ( <ul ref={props.mRef}> {props.items.map((item, i) => ( <li key={i}> <button onClick={(el) => props.onSelect(item)}>Select</button> {item} </li> ))} </ul> ); }
Option 2 — Redeclare forwardRef
// Redecalare forwardRef declare module "react" { function forwardRef<T, P = {}>( render: (props: P, ref: React.Ref<T>) => React.ReactElement | null ): (props: P & React.RefAttributes<T>) => React.ReactElement | null; } // Just write your components like you're used to! import { forwardRef, ForwardedRef } from "react"; interface ClickableListProps<T> { items: T[]; onSelect: (item: T) => void; } function ClickableListInner<T>( props: ClickableListProps<T>, ref: ForwardedRef<HTMLUListElement> ) { return ( <ul ref={ref}> {props.items.map((item, i) => ( <li key={i}> <button onClick={(el) => props.onSelect(item)}>Select</button> {item} </li> ))} </ul> ); } export const ClickableList = forwardRef(ClickableListInner);
More Info
- https://medium.com/@martin_hotell/react-refs-with-typescript-a32d56c4d315
You may also wish to do Conditional Rendering with forwardRef
.
Something to add? File an issue.
Portals
Using ReactDOM.createPortal
:
const modalRoot = document.getElementById("modal-root") as HTMLElement; // assuming in your html file has a div with id 'modal-root'; export class Modal extends React.Component<{ children?: React.ReactNode }> { el: HTMLElement = document.createElement("div"); componentDidMount() { modalRoot.appendChild(this.el); } componentWillUnmount() { modalRoot.removeChild(this.el); } render() { return ReactDOM.createPortal(this.props.children, this.el); } }
View in the TypeScript Playground
Using hooks
Same as above but using hooks
import { useEffect, useRef, ReactNode } from "react"; import { createPortal } from "react-dom"; const modalRoot = document.querySelector("#modal-root") as HTMLElement; type ModalProps = { children: ReactNode; }; function Modal({ children }: ModalProps) { // create div element only once using ref const elRef = useRef<HTMLDivElement | null>(null); if (!elRef.current) elRef.current = document.createElement("div"); useEffect(() => { const el = elRef.current!; // non-null assertion because it will never be null modalRoot.appendChild(el); return () => { modalRoot.removeChild(el); }; }, []); return createPortal(children, elRef.current); }
View in the TypeScript Playground
Modal Component Usage Example:
import { useState } from "react"; function App() { const [showModal, setShowModal] = useState(false); return ( <div> // you can also put this in your static html file <div id="modal-root"></div> {showModal && ( <Modal> <div style={{ display: "grid", placeItems: "center", height: "100vh", width: "100vh", background: "rgba(0,0,0,0.1)", zIndex: 99, }} > I'm a modal!{" "} <button style={{ background: "papyawhip" }} onClick={() => setShowModal(false)} > close </button> </div> </Modal> )} <button onClick={() => setShowModal(true)}>show Modal</button> // rest of your app </div> ); }
Context of Example
This example is based on the Event Bubbling Through Portal example of React docs.
Error Boundaries
Option 1: Using react-error-boundary
React-error-boundary — is a lightweight package ready to use for this scenario with TS support built-in.
This approach also lets you avoid class components that are not that popular anymore.
Options 2: Writing your custom error boundary component
If you don’t want to add a new npm package for this, you can also write your own ErrorBoundary
component.
import React, { Component, ErrorInfo, ReactNode } from "react"; interface Props { children?: ReactNode; } interface State { hasError: boolean; } class ErrorBoundary extends Component<Props, State> { public state: State = { hasError: false }; public static getDerivedStateFromError(_: Error): State { // Update state so the next render will show the fallback UI. return { hasError: true }; } public componentDidCatch(error: Error, errorInfo: ErrorInfo) { console.error("Uncaught error:", error, errorInfo); } public render() { if (this.state.hasError) { return <h1>Sorry.. there was an error</h1>; } return this.props.children; } } export default ErrorBoundary;
Something to add? File an issue.
Concurrent React/React Suspense
Not written yet. watch https://github.com/sw-yx/fresh-async-react for more on React Suspense and Time Slicing.
Something to add? File an issue.
Troubleshooting Handbook: Types
⚠️ Have you read the TypeScript FAQ Your answer might be there!
Facing weird type errors? You aren’t alone. This is the hardest part of using TypeScript with React. Be patient — you are learning a new language after all. However, the more you get good at this, the less time you’ll be working against the compiler and the more the compiler will be working for you!
Try to avoid typing with any
as much as possible to experience the full benefits of TypeScript. Instead, let’s try to be familiar with some of the common strategies to solve these issues.
Union Types and Type Guarding
Union types are handy for solving some of these typing problems:
class App extends React.Component< {}, { count: number | null; // like this } > { state = { count: null, }; render() { return <div onClick={() => this.increment(1)}>{this.state.count}</div>; } increment = (amt: number) => { this.setState((state) => ({ count: (state.count || 0) + amt, })); }; }
View in the TypeScript Playground
Type Guarding: Sometimes Union Types solve a problem in one area but create another downstream. If A
and B
are both object types, A | B
isn’t «either A or B», it is «A or B or both at once», which causes some confusion if you expected it to be the former. Learn how to write checks, guards, and assertions (also see the Conditional Rendering section below). For example:
interface Admin { role: string; } interface User { email: string; } // Method 1: use `in` keyword function redirect(user: Admin | User) { if ("role" in user) { // use the `in` operator for typeguards since TS 2.7+ routeToAdminPage(user.role); } else { routeToHomePage(user.email); } } // Method 2: custom type guard, does the same thing in older TS versions or where `in` isnt enough function isAdmin(user: Admin | User): user is Admin { return (user as any).role !== undefined; }
View in the TypeScript Playground
Method 2 is also known as User-Defined Type Guards and can be really handy for readable code. This is how TS itself refines types with typeof
and instanceof
.
If you need if...else
chains or the switch
statement instead, it should «just work», but look up Discriminated Unions if you need help. (See also: Basarat’s writeup). This is handy in typing reducers for useReducer
or Redux.
Optional Types
If a component has an optional prop, add a question mark and assign during destructure (or use defaultProps).
class MyComponent extends React.Component<{ message?: string; // like this }> { render() { const { message = "default" } = this.props; return <div>{message}</div>; } }
You can also use a !
character to assert that something is not undefined, but this is not encouraged.
Something to add? File an issue with your suggestions!
Enum Types
We recommend avoiding using enums as far as possible.
Enums have a few documented issues (the TS team agrees). A simpler alternative to enums is just declaring a union type of string literals:
export declare type Position = "left" | "right" | "top" | "bottom";
If you must use enums, remember that enums in TypeScript default to numbers. You will usually want to use them as strings instead:
export enum ButtonSizes { default = "default", small = "small", large = "large", } // usage export const PrimaryButton = ( props: Props & React.HTMLProps<HTMLButtonElement> ) => <Button size={ButtonSizes.default} {...props} />;
Type Assertion
Sometimes you know better than TypeScript that the type you’re using is narrower than it thinks, or union types need to be asserted to a more specific type to work with other APIs, so assert with the as
keyword. This tells the compiler you know better than it does.
class MyComponent extends React.Component<{ message: string; }> { render() { const { message } = this.props; return ( <Component2 message={message as SpecialMessageType}>{message}</Component2> ); } }
View in the TypeScript Playground
Note that you cannot assert your way to anything — basically it is only for refining types. Therefore it is not the same as «casting» a type.
You can also assert a property is non-null, when accessing it:
element.parentNode!.removeChild(element); // ! before the period myFunction(document.getElementById(dialog.id!)!); // ! after the property accessing let userID!: string; // definite assignment assertion... be careful!
Of course, try to actually handle the null case instead of asserting
Simulating Nominal Types
TS’ structural typing is handy, until it is inconvenient. However you can simulate nominal typing with type branding
:
type OrderID = string & { readonly brand: unique symbol }; type UserID = string & { readonly brand: unique symbol }; type ID = OrderID | UserID;
We can create these values with the Companion Object Pattern:
function OrderID(id: string) { return id as OrderID; } function UserID(id: string) { return id as UserID; }
Now TypeScript will disallow you from using the wrong ID in the wrong place:
function queryForUser(id: UserID) { // ... } queryForUser(OrderID("foobar")); // Error, Argument of type 'OrderID' is not assignable to parameter of type 'UserID'
In future you can use the unique
keyword to brand. See this PR.
Intersection Types
Adding two types together can be handy, for example when your component is supposed to mirror the props of a native component like a button
:
export interface PrimaryButtonProps { label: string; } export const PrimaryButton = ( props: PrimaryButtonProps & React.ButtonHTMLAttributes<HTMLButtonElement> ) => { // do custom buttony stuff return <button {...props}> {props.label} </button>; };
Playground here
You can also use Intersection Types to make reusable subsets of props for similar components:
type BaseProps = { className?: string, style?: React.CSSProperties name: string // used in both } type DogProps = { tailsCount: number } type HumanProps = { handsCount: number } export const Human = (props: BaseProps & HumanProps) => // ... export const Dog = (props: BaseProps & DogProps) => // ...
View in the TypeScript Playground
Make sure not to confuse Intersection Types (which are and operations) with Union Types (which are or operations).
Union Types
This section is yet to be written (please contribute!). Meanwhile, see our commentary on Union Types usecases.
The ADVANCED cheatsheet also has information on Discriminated Union Types, which are helpful when TypeScript doesn’t seem to be narrowing your union type as you expect.
Overloading Function Types
Specifically when it comes to functions, you may need to overload instead of union type. The most common way function types are written uses the shorthand:
type FunctionType1 = (x: string, y: number) => number;
But this doesn’t let you do any overloading. If you have the implementation, you can put them after each other with the function keyword:
function pickCard(x: { suit: string; card: number }[]): number; function pickCard(x: number): { suit: string; card: number }; function pickCard(x): any { // implementation with combined signature // ... }
However, if you don’t have an implementation and are just writing a .d.ts
definition file, this won’t help you either. In this case you can forego any shorthand and write them the old-school way. The key thing to remember here is as far as TypeScript is concerned, functions are just callable objects with no key
:
type pickCard = { (x: { suit: string; card: number }[]): number; (x: number): { suit: string; card: number }; // no need for combined signature in this form // you can also type static properties of functions here eg `pickCard.wasCalled` };
Note that when you implement the actual overloaded function, the implementation will need to declare the combined call signature that you’ll be handling, it won’t be inferred for you. You can readily see examples of overloads in DOM APIs, e.g. createElement
.
Read more about Overloading in the Handbook.
Using Inferred Types
Leaning on TypeScript’s Type Inference is great… until you realize you need a type that was inferred, and have to go back and explicitly declare types/interfaces so you can export them for reuse.
Fortunately, with typeof
, you won’t have to do that. Just use it on any value:
const [state, setState] = useState({ foo: 1, bar: 2, }); // state's type inferred to be {foo: number, bar: number} const someMethod = (obj: typeof state) => { // grabbing the type of state even though it was inferred // some code using obj setState(obj); // this works };
Using Partial Types
Working with slicing state and props is common in React. Again, you don’t really have to go and explicitly redefine your types if you use the Partial
generic type:
const [state, setState] = useState({ foo: 1, bar: 2, }); // state's type inferred to be {foo: number, bar: number} // NOTE: stale state merging is not actually encouraged in useState // we are just demonstrating how to use Partial here const partialStateUpdate = (obj: Partial<typeof state>) => setState({ ...state, ...obj }); // later on... partialStateUpdate({ foo: 2 }); // this works
Minor caveats on using Partial
Note that there are some TS users who don’t agree with using Partial
as it behaves today. See subtle pitfalls of the above example here, and check out this long discussion on why @types/react uses Pick instead of Partial.
The Types I need weren’t exported!
This can be annoying but here are ways to grab the types!
- Grabbing the Prop types of a component: Use
React.ComponentProps
andtypeof
, and optionallyOmit
any overlapping types
import { Button } from "library"; // but doesn't export ButtonProps! oh no! type ButtonProps = React.ComponentProps<typeof Button>; // no problem! grab your own! type AlertButtonProps = Omit<ButtonProps, "onClick">; // modify const AlertButton = (props: AlertButtonProps) => ( <Button onClick={() => alert("hello")} {...props} /> );
You may also use ComponentPropsWithoutRef
(instead of ComponentProps) and ComponentPropsWithRef
(if your component specifically forwards refs)
- Grabbing the return type of a function: use
ReturnType
:
// inside some library - return type { baz: number } is inferred but not exported function foo(bar: string) { return { baz: 1 }; } // inside your app, if you need { baz: number } type FooReturn = ReturnType<typeof foo>; // { baz: number }
In fact you can grab virtually anything public: see this blogpost from Ivan Koshelev
function foo() { return { a: 1, b: 2, subInstArr: [ { c: 3, d: 4, }, ], }; } type InstType = ReturnType<typeof foo>; type SubInstArr = InstType["subInstArr"]; type SubInstType = SubInstArr[0]; let baz: SubInstType = { c: 5, d: 6, // type checks ok! }; //You could just write a one-liner, //But please make sure it is forward-readable //(you can understand it from reading once left-to-right with no jumps) type SubInstType2 = ReturnType<typeof foo>["subInstArr"][0]; let baz2: SubInstType2 = { c: 5, d: 6, // type checks ok! };
- TS also ships with a
Parameters
utility type for extracting the parameters of a function - for anything more «custom», the
infer
keyword is the basic building block for this, but takes a bit of getting used to. Look at the source code for the above utility types, and this example to get the idea. Basarat also has a good video oninfer
.
The Types I need don’t exist!
What’s more annoying than modules with unexported types? Modules that are untyped!
Before you proceed — make sure you have checked that types don’t exist in DefinitelyTyped or TypeSearch
Fret not! There are more than a couple of ways in which you can solve this problem.
Slapping any
on everything
A lazier way would be to create a new type declaration file, say typedec.d.ts
– if you don’t already have one. Ensure that the path to file is resolvable by TypeScript by checking the include
array in the tsconfig.json
file at the root of your directory.
// inside tsconfig.json { // ... "include": [ "src" // automatically resolves if the path to declaration is src/typedec.d.ts ] // ... }
Within this file, add the declare
syntax for your desired module, say my-untyped-module
– to the declaration file:
// inside typedec.d.ts declare module "my-untyped-module";
This one-liner alone is enough if you just need it to work without errors. A even hackier, write-once-and-forget way would be to use "*"
instead which would then apply the Any
type for all existing and future untyped modules.
This solution works well as a workaround if you have less than a couple untyped modules. Anything more, you now have a ticking type-bomb in your hands. The only way of circumventing this problem would be to define the missing types for those untyped modules as explained in the following sections.
Autogenerate types
You can use TypeScript with --allowJs
and --declaration
to see TypeScript’s «best guess» at the types of the library.
If this doesn’t work well enough, use dts-gen
to use the runtime shape of the object to accurately enumerate all available properties. This tends to be very accurate, BUT the tool does not yet support scraping JSDoc comments to populate additional types.
npm install -g dts-gen dts-gen -m <your-module>
There are other automated JS to TS conversion tools and migration strategies — see our MIGRATION cheatsheet.
Typing Exported Hooks
Typing Hooks is just like typing pure functions.
The following steps work under two assumptions:
- You have already created a type declaration file as stated earlier in the section.
- You have access to the source code — specifically the code that directly exports the functions you will be using. In most cases, it would be housed in an
index.js
file.
Typically you need a minimum of two type declarations (one for Input Prop and the other for Return Prop) to define a hook completely. Suppose the hook you wish to type follows the following structure,
// ... const useUntypedHook = (prop) => { // some processing happens here return { /* ReturnProps */ }; }; export default useUntypedHook;
then, your type declaration should most likely follow the following syntax.
declare module 'use-untyped-hook' { export interface InputProps { ... } // type declaration for prop export interface ReturnProps { ... } // type declaration for return props export default function useUntypedHook( prop: InputProps // ... ): ReturnProps; }
For instance, the useDarkMode hook exports the functions that follows a similar structure.
// inside src/index.js const useDarkMode = ( initialValue = false, // -> input props / config props to be exported { // -> input props / config props to be exported element, classNameDark, classNameLight, onChange, storageKey = "darkMode", storageProvider, global, } = {} ) => { // ... return { // -> return props to be exported value: state, enable: useCallback(() => setState(true), [setState]), disable: useCallback(() => setState(false), [setState]), toggle: useCallback(() => setState((current) => !current), [setState]), }; }; export default useDarkMode;
As the comments suggest, exporting these config props and return props following the aforementioned structure will result in the following type export.
declare module "use-dark-mode" { /** * A config object allowing you to specify certain aspects of `useDarkMode` */ export interface DarkModeConfig { classNameDark?: string; // A className to set "dark mode". Default = "dark-mode". classNameLight?: string; // A className to set "light mode". Default = "light-mode". element?: HTMLElement; // The element to apply the className. Default = `document.body` onChange?: (val?: boolean) => void; // Override the default className handler with a custom callback. storageKey?: string; // Specify the `localStorage` key. Default = "darkMode". Set to `null` to disable persistent storage. storageProvider?: WindowLocalStorage; // A storage provider. Default = `localStorage`. global?: Window; // The global object. Default = `window`. } /** * An object returned from a call to `useDarkMode`. */ export interface DarkMode { readonly value: boolean; enable: () => void; disable: () => void; toggle: () => void; } /** * A custom React Hook to help you implement a "dark mode" component for your application. */ export default function useDarkMode( initialState?: boolean, config?: DarkModeConfig ): DarkMode; }
Typing Exported Components
In case of typing untyped class components, there’s almost no difference in approach except for the fact that after declaring the types, you export the extend the type using class UntypedClassComponent extends React.Component<UntypedClassComponentProps, any> {}
where UntypedClassComponentProps
holds the type declaration.
For instance, sw-yx’s Gist on React Router 6 types implemented a similar method for typing the then untyped RR6.
declare module "react-router-dom" { import * as React from 'react'; // ... type NavigateProps<T> = { to: string | number, replace?: boolean, state?: T } //... export class Navigate<T = any> extends React.Component<NavigateProps<T>>{} // ...
For more information on creating type definitions for class components, you can refer to this post for reference.
Frequent Known Problems with TypeScript
Just a list of stuff that React developers frequently run into, that TS has no solution for. Not necessarily TSX only.
TypeScript doesn’t narrow after an object element null check
Ref: https://mobile.twitter.com/tannerlinsley/status/1390409931627499523. see also microsoft/TypeScript#9998
TypeScript doesn’t let you restrict the type of children
Guaranteeing typesafety for this kind of API isn’t possible:
<Menu> <MenuItem/> {/* ok */} <MenuLink/> {/* ok */} <div> {/* error */} </Menu>
Source: https://twitter.com/ryanflorence/status/1085745787982700544?s=20
Troubleshooting Handbook: Operators
typeof
andinstanceof
: type query used for refinementkeyof
: get keys of an object.keyof T
is an operator to tell you what values ofk
can be used forobj[k]
.- Some misconceptions here.
O[K]
: property lookup[K in O]
: mapped types+
or-
orreadonly
or?
: addition and subtraction and readonly and optional modifiersx ? Y : Z
: Conditional types for generic types, type aliases, function parameter types!
: Nonnull assertion for nullable types=
: Generic type parameter default for generic typesas
: type assertionis
: type guard for function return types
Conditional Types are a difficult topic to get around so here are some extra resources:
- fully walked through explanation https://artsy.github.io/blog/2018/11/21/conditional-types-in-typescript/
- Bailing out and other advanced topics https://github.com/sw-yx/ts-spec/blob/master/conditional-types.md
- Basarat’s video https://www.youtube.com/watch?v=SbVgPQDealg&list=PLYvdvJlnTOjF6aJsWWAt7kZRJvzw-en8B&index=2&t=0s
- Generics, Conditional types and Mapped types
Troubleshooting Handbook: Utilities
These are all built in, see source in es5.d.ts:
Awaited
: emulate the behavior ofawait
Capitalize
: convert first character of string literal type to uppercaseConstructorParameters
: a tuple of class constructor’s parameter typesExclude
: exclude a type from another typeExtract
: select a subtype that is assignable to another typeInstanceType
: the instance type you get from anew
ing a class constructorLowercase
: convert string literal type to lowercaseNonNullable
: excludenull
andundefined
from a typeOmit
: construct a type with the properties of another type.OmitThisParameter
: remove the ‘this’ parameter from a function type.Parameters
: a tuple of a function’s parameter typesPartial
: Make all properties in an object optionalReadonly
: Make all properties in an object readonlyReadonlyArray
: Make an immutable array of the given typePick
: A subtype of an object type with a subset of its keysRecord
: A map from a key type to a value typeRequired
: Make all properties in an object requiredReturnType
: A function’s return typeThisParameterType
: extract the type of the ‘this’ parameter of a function typeThisType
: marker for contextual ‘this’ typeUncapitalize
: convert first character of string literal type to lowercaseUppercase
: convert string literal type to uppercase
Troubleshooting Handbook: tsconfig.json
You can find all the Compiler options in the TypeScript docs. The new TS docs also has per-flag annotations of what each does. This is the setup I roll with for APPS (not libraries — for libraries you may wish to see the settings we use in tsdx
):
{ "compilerOptions": { "incremental": true, "outDir": "build/lib", "target": "es5", "module": "esnext", "lib": ["DOM", "ESNext"], "sourceMap": true, "importHelpers": true, "declaration": true, "rootDir": "src", "strict": true, "noUnusedLocals": true, "noUnusedParameters": true, "noImplicitReturns": true, "noFallthroughCasesInSwitch": true, "allowJs": false, "jsx": "react", "moduleResolution": "node", "baseUrl": "src", "forceConsistentCasingInFileNames": true, "esModuleInterop": true, "suppressImplicitAnyIndexErrors": true, "allowSyntheticDefaultImports": true, "experimentalDecorators": true }, "include": ["src/**/*"], "exclude": ["node_modules", "build", "scripts"] }
You can find more recommended TS config here.
Please open an issue and discuss if there are better recommended choices for React.
Selected flags and why we like them:
esModuleInterop
: disables namespace imports (import * as foo from "foo"
) and enables CJS/AMD/UMD style imports (import fs from "fs"
)strict
:strictPropertyInitialization
forces you to initialize class properties or explicitly declare that they can be undefined. You can opt out of this with a definite assignment assertion."typeRoots": ["./typings", "./node_modules/@types"]
: By default, TypeScript looks innode_modules/@types
and parent folders for third party type declarations. You may wish to override this default resolution so you can put all your global type declarations in a specialtypings
folder.
Compilation time grows linearly with size of codebase. For large projects, you will want to use Project References. See our ADVANCED cheatsheet for commentary.
Troubleshooting Handbook: Fixing bugs in official typings
If you run into bugs with your library’s official typings, you can copy them locally and tell TypeScript to use your local version using the «paths» field. In your tsconfig.json
:
{ "compilerOptions": { "paths": { "mobx-react": ["../typings/modules/mobx-react"] } } }
Thanks to @adamrackis for the tip.
If you just need to add an interface, or add missing members to an existing interface, you don’t need to copy the whole typing package. Instead, you can use declaration merging:
// my-typings.ts declare module "plotly.js" { interface PlotlyHTMLElement { removeAllListeners(): void; } } // MyComponent.tsx import { PlotlyHTMLElement } from "plotly.js"; const f = (e: PlotlyHTMLElement) => { e.removeAllListeners(); };
You dont always have to implement the module, you can simply import the module as any
for a quick start:
// my-typings.ts declare module "plotly.js"; // each of its imports are `any`
Because you don’t have to explicitly import this, this is known as an ambient module declaration. You can do AMD’s in a script-mode .ts
file (no imports or exports), or a .d.ts
file anywhere in your project.
You can also do ambient variable and ambient type declarations:
// ambient utiltity type type ToArray<T> = T extends unknown[] ? T : T[]; // ambient variable declare let process: { env: { NODE_ENV: "development" | "production"; }; }; process = { env: { NODE_ENV: "production", }, };
You can see examples of these included in the built in type declarations in the lib
field of tsconfig.json
Troubleshooting Handbook: Globals, Images and other non-TS files
Use declaration merging.
If, say, you are using a third party JS script that attaches on to the window
global, you can extend Window
:
declare global { interface Window { MyVendorThing: MyVendorType; } }
Likewise if you wish to «import» an image or other non TS/TSX file:
// declaration.d.ts // anywhere in your project, NOT the same name as any of your .ts/tsx files declare module "*.png"; // importing in a tsx file import * as logo from "./logo.png";
Note that tsc
cannot bundle these files for you, you will have to use Webpack or Parcel.
Related issue: microsoft/TypeScript-React-Starter#12 and StackOverflow
Editor Tooling and Integration
- VSCode
- swyx’s VSCode Extension: https://github.com/sw-yx/swyx-react-typescript-snippets
- amVim: https://marketplace.visualstudio.com/items?itemName=auiworks.amvim
- VIM
- https://github.com/Quramy/tsuquyomi
- nvim-typescript?
- https://github.com/leafgarland/typescript-vim
- peitalin/vim-jsx-typescript
- NeoVim: https://github.com/neoclide/coc.nvim
- other discussion: https://mobile.twitter.com/ryanflorence/status/1085715595994095620
You are free to use this repo’s TSX logo if you wish:
You may also wish to use alternative logos — jsx-tsx-logos
Linting
⚠️Note that TSLint is now in maintenance and you should try to use ESLint instead. If you are interested in TSLint tips, please check this PR from @azdanov. The rest of this section just focuses on ESLint. You can convert TSlint to ESlint with this tool.
⚠️This is an evolving topic.
typescript-eslint-parser
is no longer maintained and work has recently begun ontypescript-eslint
in the ESLint community to bring ESLint up to full parity and interop with TSLint.
Follow the TypeScript + ESLint docs at https://github.com/typescript-eslint/typescript-eslint:
yarn add -D @typescript-eslint/eslint-plugin @typescript-eslint/parser eslint
add a lint
script to your package.json
:
"scripts": { "lint": "eslint 'src/**/*.ts'" },
and a suitable .eslintrc.js
(using .js
over .json
here so we can add comments):
module.exports = { env: { es6: true, node: true, jest: true, }, extends: "eslint:recommended", parser: "@typescript-eslint/parser", plugins: ["@typescript-eslint"], parserOptions: { ecmaVersion: 2017, sourceType: "module", }, rules: { indent: ["error", 2], "linebreak-style": ["error", "unix"], quotes: ["error", "single"], "no-console": "warn", "no-unused-vars": "off", "@typescript-eslint/no-unused-vars": [ "error", { vars: "all", args: "after-used", ignoreRestSiblings: false }, ], "@typescript-eslint/explicit-function-return-type": "warn", // Consider using explicit annotations for object literals and function return types even when they can be inferred. "no-empty": "warn", }, };
Most of this is taken from the tsdx
PR which is for libraries.
More .eslintrc.json
options to consider with more options you may want for apps:
{ "extends": [ "airbnb", "prettier", "prettier/react", "plugin:prettier/recommended", "plugin:jest/recommended", "plugin:unicorn/recommended" ], "plugins": ["prettier", "jest", "unicorn"], "parserOptions": { "sourceType": "module", "ecmaFeatures": { "jsx": true } }, "env": { "es6": true, "browser": true, "jest": true }, "settings": { "import/resolver": { "node": { "extensions": [".js", ".jsx", ".ts", ".tsx"] } } }, "overrides": [ { "files": ["**/*.ts", "**/*.tsx"], "parser": "typescript-eslint-parser", "rules": { "no-undef": "off" } } ] }
You can read a fuller TypeScript + ESLint setup guide here from Matterhorn, in particular check https://github.com/MatterhornDev/learn-typescript-linting.
Another great resource is «Using ESLint and Prettier in a TypeScript Project» by @robertcoopercode.
Wes Bos is also working on TypeScript support for his eslint+prettier config.
If you’re looking for information on Prettier, check out the Prettier guide.
Other React + TypeScript resources
- me! https://twitter.com/swyx
- https://www.freecodecamp.org/news/how-to-build-a-todo-app-with-react-typescript-nodejs-and-mongodb/
- https://github.com/piotrwitek/react-redux-typescript-guide — HIGHLY HIGHLY RECOMMENDED, i wrote this repo before knowing about this one, this has a lot of stuff I don’t cover, including REDUX and JEST.
- 10 Bad TypeScript Habits:
- not using
"strict": true
- using
||
for default values when we have??
- Using
any
instead ofunknown
for API responses - using
as
assertion instead of Type Guards (function isFoo(obj: unknown): obj is Foo {}
) as any
in tests- Marking optional properties instead of modeling which combinations exist by extending interfaces
- One letter generics
- Non-boolean
if (nonboolean)
checks - bangbang checks
if (!!nonboolean)
!= null
to check fornull
andundefined
- not using
- Ultimate React Component Patterns with TypeScript 2.8
- Basarat’s TypeScript gitbook has a React section with an Egghead.io course as well.
- Palmer Group’s TypeScript + React Guidelines as well as Jared’s other work like disco.chat
- Sindre Sorhus’ TypeScript Style Guide
- TypeScript React Starter Template by Microsoft A starter template for TypeScript and React with a detailed README describing how to use the two together. Note: this doesn’t seem to be frequently updated anymore.
- Steve Kinney’s React and TypeScript course on Frontend Masters (paid)
- Brian Holt’s Intermediate React course on Frontend Masters (paid) — Converting App To TypeScript Section
- Mike North’s Production TypeScript course on Frontend Masters (paid)
- TSX Guide by gojutin
- TypeScript conversion:
- Lyft’s React-To-TypeScript conversion CLI
- Gustav Wengel’s blogpost — converting a React codebase to TypeScript
- Microsoft React TypeScript conversion guide
- Matt Pocock’s Beginner’s Typescript Tutorial
- Matt Pocock’s React with TypeScript Tutorial
- You?.
Recommended React + TypeScript talks
- Ultimate React Component Patterns with TypeScript, by Martin Hochel, GeeCon Prague 2018
- Please help contribute this new section!
Time to Really Learn TypeScript
Believe it or not, we have only barely introduced TypeScript here in this cheatsheet. If you are still facing TypeScript troubleshooting issues, it is likely that your understanding of TS is still too superficial.
There is a whole world of generic type logic that you will eventually get into, however it becomes far less dealing with React than just getting good at TypeScript so it is out of scope here. But at least you can get productive in React now
It is worth mentioning some resources to help you get started:
- Step through the 40+ examples under the playground’s Examples section, written by @Orta
- Anders Hejlsberg’s overview of TS: https://www.youtube.com/watch?v=ET4kT88JRXs
- Marius Schultz: https://blog.mariusschulz.com/series/typescript-evolution with an Egghead.io course
- Basarat’s Deep Dive: https://basarat.gitbook.io/typescript/
- Axel Rauschmeyer’s Tackling TypeScript
- Rares Matei: Egghead.io course’s advanced TypeScript course on Egghead.io is great for newer typescript features and practical type logic applications (e.g. recursively making all properties of a type
readonly
) - Learn about Generics, Conditional types and Mapped types
- Shu Uesugi: TypeScript for Beginner Programmers
- Here is another TypeScript Error Guide that you can check for your errors.
Example App
- Create React App TypeScript Todo Example 2021
- Ben Awad’s 14 hour Fullstack React/GraphQL/TypeScript Tutorial
- Cypress Realworld App
My question isn’t answered here!
- File an issue.
Contributors
This project follows the all-contributors specification. See CONTRIBUTORS.md for the full list. Contributions of any kind welcome!
Introduction
TypeScript has grown to be one of the most popular and widely used programming language in web development. TypeScript is a superset of JavaScript. That simply means TypeScript is essentially JavaScript with some additional features. The goal of TypeScript is to write strongly typed JavaScript. Strong typing helps to scale web applications with minimal bugs. TypeScript code is converted to JavaScript by use of a compiler like TypeScript Compiler or Babel.
For a better understanding, we will develop a Student Application using React and TypeScript. This tutorial will give you everything you need to get started with TypeScript in your next project.
If you would prefer to follow this tutorial on YouTube it’s available at the link below.
The final solution is available on GitHub
React TypeScript Student App
A Student App using React TypeScript. Includes features like Type Inference, Type Annotation, Union Types, Interfaces, Enums and Generics.
Local Setup
- Clone the Repository using the following command: git clone https://github.com/tndungu/React-TypeScript-StudentApp.git
- Open the Repository using your favorite text editor. I use Visual Studio Code as a personal preference.
- Open terminal and run the following: npm install
- Run the project using npm start. This will open the project in http://localhost:3000
Video
There is a step by step guide on building the project on YouTube.
Prerequisites
This tutorial assumes you have some basic knowledge of React
Why use TypeScript?
There are many benefits of using typescript. The main ones are listed below:
- Strong typing ensures bugs are caught during development as opposed to being caught while the application is in Production. Also makes it easy to debug code.
- Documentation — It serves as documentation for JavaScript code making it easy to read and maintain.
- Saves development time.
- Generics in TypeScript provides a powerful type system that gives developers a lot of flexibility.
Student App in TypeScript
We will build an app using React that will cover the following aspects of TypeScript.
- Props
- Type inference vs Type annotation
- Union Types
- Organizing interfaces
- Enums
- Generics
App Development: Step by Step Guide
To start a new typescript app, use the following command
- yarn:
yarn create-react-app student-app --template typescript
Enter fullscreen mode
Exit fullscreen mode
- npm:
npx create-react-app student-app --template typescript
Enter fullscreen mode
Exit fullscreen mode
cd into student-app and yarn start
OR npm start
if using npm.
Props
We will start by passing a prop to the <App/>
component. It will be a string that will have the name of the app. Here we will see our first use case for TypeScript.
Modify the App.tsx
and index.tsx
files to look as below. Delete the App.test.tsx
file.
//Index.tsx
import React from 'react';
import ReactDOM from 'react-dom/client';
import './index.css';
import App from './App';
const root = ReactDOM.createRoot(
document.getElementById('root') as HTMLElement
);
root.render(
<React.StrictMode>
<App name="Student App" />
</React.StrictMode>
);
//App.tsx
export interface AppName {
name: string;
}
function App({ name }: AppName) {
return (
<div className="App">
<h1>{name}</h1>
</div>
);
}
export default App;
Enter fullscreen mode
Exit fullscreen mode
On your browser, you should be able to see Student App displayed. As we can see, AppName is an Interface that has a property called name.
An Interface is an abstract type that the compiler uses to know which property names a given object can have. It’s used for type checking.
In the AppName
Interface, the property name is a string, that’s why we are passing a string to the App
component. If you try to pass any other type like integer or boolean the App will give an error. It will not even compile. If you were not using TypeScript, the app will compile but give unexpected results later after deployment.
Type inference vs Type annotation
const [studentId,setStudentId] = useState(0)
setStudentId('test')
Enter fullscreen mode
Exit fullscreen mode
If you try the code above, it will not compile, typescript will give an error. This is because typescript has already inferred the type of studentId
to be an integer(number). If you try to assign a string to studentId
will therefore generate an error at compile time. This is referred to as type inference in TypeScript.
Similarly, the code below will not run in TypeScript.
const [student, setStudent] = useState(null)
setStudent({
name: 'Antony',
surname: 'Ndungu',
age: 15
})
Enter fullscreen mode
Exit fullscreen mode
This is because TypeScript infers the student object to be of type null and therefore we have to explicitly define the student object and in the useState()
hook we have to tell TypeScript user can be either null or student object. This is referred to as Type annotation. We will do that using the Student
interface. The final code of our App.tsx
will look as follows:
import { useState } from "react";
import './App.css'
export interface AppName {
name: string;
}
export interface Student {
name: string;
surname: string;
age?: number;
address?: {
houseNo: number;
street: string;
Town: string;
}
}
function App({ name }: AppName) {
const [student, setStudent] = useState<Student | null>(null)
const addStudent = () => {
setStudent({
name: 'Antony',
surname: 'Ndungu',
age: 20
})
}
return (
<div className="App">
<h1>{name}</h1>
<p><b>{student?.name} {student?.surname}</b></p>
<button onClick={addStudent}> Add Student</button>
</div>
);
}
export default App;
Enter fullscreen mode
Exit fullscreen mode
From the above code, the student can either be null
or Student
object. This is denoted by the code useState<Student | null>(null)
. This introduces another concept called Union Types.
Union Types
This is when you have an object that can be of having different types. For instance you might have const [student, setStudent] = useState<Student | null | boolean>(null)
. In this case Student | null | boolean
are Union Types.
Organizing Interfaces
There are 2 issues as far as our interfaces are concerned:
- We should not nest objects as we have done in the
Student
interface. Instead, we should have another interface for Address. - The Interfaces should be on their separate module for ease of maintenance and re-use.
We will create a new Interface for Address
. We will then create a new module for interfaces by creating an interfaces.ts
file inside the src
folder and moving the interfaces there. We will then import our interfaces in the App.tsx
file. The final App.tsx
and Interfaces.ts
files will look as follows:
//App.tsx
import { useState } from "react";
import './App.css'
import { Student, AppName } from './interfaces'
function App({ name }: AppName) {
const [student, setStudent] = useState<Student | null>(null)
const addStudent = () => {
setStudent({
name: 'Antony',
surname: 'Ndungu',
age: 20
})
}
return (
<div className="App">
<h1>{name}</h1>
<p><b>{student?.name} {student?.surname}</b></p>
<button onClick={addStudent}> Add Student</button>
</div>
);
}
export default App;
//interfaces.tsx
export interface AppName {
name: string;
}
export interface Address {
houseNo: number;
street: string;
Town: string;
}
export interface Student {
name: string;
surname: string;
age?: number;
address?: Address
}
Enter fullscreen mode
Exit fullscreen mode
Enums
An Enum is a type for holding constant values. In our example, the student level can either be «Undergraduate» or «Postgraduate».
export enum Level {
Undergraduate = "Undergraduate",
Postgraduate = "Postgraduate"
}
Enter fullscreen mode
Exit fullscreen mode
The above enum can be used to conditionally display the age of a student based on the student’s level as shown below:
{
student?.level === Level.Undergraduate &&
<p><b>Age: {student.age}</b></p>
}
Enter fullscreen mode
Exit fullscreen mode
Generics
Generics are an important feature of TypeScript that is used for creating reusable components. The same component can be used to handle different data types as shown below.
Display both Students’ and Courses’ lists using the same component.
For our student App, I would like to display 2 lists: One for the students’ list and another one for the courses’ list. Without generics, I will end up creating 2 components that will be used to display the 2 lists. However, with Generics I will use only one component to display both lists. The DisplayData
component can be re-used to display any list of items even as our app grows bigger.
In src
folder, I have created DisplayData.tsx
component. The file looks as follows:
interface Item {
id: number;
}
interface DisplayDataItem<T> {
items: Array<T>
}
export const DisplayData = <T extends Item>({ items }: DisplayDataItem<T>) => {
return (
<>
<ul>
{items.map((item) => (
<li key={item.id}>{JSON.stringify(item)}</li>
))}
</ul>
</>
)
}
Enter fullscreen mode
Exit fullscreen mode
Interface Item
has a property id
which means any object that uses this component must have an id
property. Interface DisplayDataItem<T>
is an object that represents an Array<T>
of type T
which means it can be used by any object which consists of an array of items. DisplayData
is a function that accepts an array of items and displays the list.
The following is the final code for App.tsx
, App.css
and data.ts
files.
//App.tsx
import { useState } from "react";
import './App.css'
import { Student, AppName, Level } from './interfaces'
import { studentList, coursesList } from "./data";
import { DisplayData } from "./DisplayData";
function App({ name }: AppName) {
const [student, setStudent] = useState<Student | null>(null)
const addStudent = () => {
setStudent({
name: 'Antony',
surname: 'Ndungu',
age: 20,
level: "Undergraduate"
})
}
return (
<div className="App">
<h1>{name}</h1>
<p><b>{student?.name} {student?.surname}</b></p>
{student?.level === Level.Undergraduate &&
<p><b>Age: {student.age}</b></p>
}
<button onClick={addStudent}> Add Student</button>
<h3>List of Students</h3>
<div>
<DisplayData items={studentList} />
</div>
<h3>List of Courses</h3>
<div>
<DisplayData items={coursesList} />
</div>
</div>
);
}
export default App;
//data.ts
export const studentList = [
{ id: 1, name: 'Antony', surname: 'Ndungu', level: 'Undergraduate', age: 20 },
{ id: 2, name: 'Chanelle', surname: 'John', level: 'Postgraduate', age: 50 },
{ id: 3, name: 'Ian', surname: 'Smith', level: 'Undergraduate', age: 46 },
{ id: 4, name: 'Michael', surname: 'Starke', level: 'Postgraduate', age: 64 },
{ id: 5, name: 'Chris', surname: 'De Kock', level: 'Undergraduate', age: 19 },
]
export const coursesList = [
{ id: 1, code: 'A141', name: 'Algorithms Analysis', description: 'Analysis & Design' },
{ id: 1, code: 'BN445', name: 'Computer Architecture I', description: 'Computer Architecture' },
{ id: 1, code: 'P888', name: 'Operations Research', description: 'Maths - Operations Research' },
{ id: 1, code: 'Z9989', name: 'Discrete Maths', description: 'Discrete Mathematics' }
]
.App {
display: flex;
width: 100%;
align-items: center;
justify-content: center;
flex-direction: column;
}
li{
list-style-type: none;
}
button {
height: 30px;
width: 150px;
background-color: turquoise;
border-radius: 5px;
}
Enter fullscreen mode
Exit fullscreen mode
Generic Search Function
Finally, we will add a Generic search where the student list can be sorted based on either student name or Age on a button click.
Create a GenericSort.ts
file and ensure you have the following code. This code takes a list of array items and key for sorting then returns the sorted list. For example, if I would like to sort the student’s list based on student name I will call the function GenericSort(studentList,"name")
This is a powerful use case for generics, I can use it if I want to sort the student records list based on different sorting columns. Implementing this without TypeScript would end up with many functions that are difficult to extend.
//GenericSort
export const GenericSort = <T,>(items: Array<T>, key: keyof T) => {
items.sort((a, b) => {
if (a[key] > b[key]) {
return 1;
}
if (a[key] < b[key]) {
return -1;
}
return 0;
})
return items
}
Enter fullscreen mode
Exit fullscreen mode
//App.tsx
import { useState } from "react";
import './App.css'
import { Student, AppName, Level } from './interfaces'
import { studentList, coursesList } from "./data";
import { DisplayData } from "./DisplayData";
import { GenericSort } from "./GenericSort";
function App({ name }: AppName) {
const [student, setStudent] = useState<Student | null>(null)
const [list, setList] = useState(studentList)
const addStudent = () => {
setStudent({
name: 'Antony',
surname: 'Ndungu',
age: 20,
level: "Undergraduate"
})
}
const sortData = () => {
GenericSort(studentList, "age")
setList([...studentList])
}
return (
<div className="App">
<h1>{name}</h1>
<p><b>{student?.name} {student?.surname}</b></p>
{student?.level === Level.Undergraduate &&
<p><b>Age: {student.age}</b></p>
}
<button onClick={addStudent}> Add Student</button>
<br />
<button onClick={sortData}>Sort Data</button>
<h3>List of Students</h3>
<div>
<DisplayData items={list} />
</div>
<h3>List of Courses</h3>
<div>
<DisplayData items={coursesList} />
</div>
</div>
);
}
export default App;
Enter fullscreen mode
Exit fullscreen mode
Conclusion
Awesome! at this point, you have gone through the core building blocks of building a React App using TypeScript. In the final part of our project, we went through an introduction to some advanced features of TypeScript, Generics.
Happy coding with TypeScript.
Feel free to comment below in case you need further assistance.
Из этого туториала вы узнаете, как быстро приступить к созданию приложений React с использованием TypeScript без необходимости какой-либо настройки с помощью create-react-app (CRA). Предположим, что на вашем компьютере уже установлены Node и NPM. Ваше приложение TypeScript/React будет работать сразу после установки без необходимости использовать CRA. Кроме того, вы узнаете, как создавать свои собственные компоненты и управлять props и state, используя TypeScript.
Установка с помощью create-react-app
create-react-app это инструмент командной строки, который позволяет разработчикам легко создавать новые приложения React с разумными настройками по умолчанию и нулевой конфигурацией.
npm install -g create-react-app
Примечание. Этот шаг теперь необязательный. TypeScript можно установить с помощью npx, который будет показан в следующем разделе.
Инициализируйте свое приложение React с помощью TypeScript
Вызовите команду create-react-app с дополнительной опцией TypeScript, чтобы сгенерировать приложение React с использованием TypeScript в качестве синтаксиса JS по умолчанию.
npx create-react-app my-app --typescript
npx — это команда, выпущенная с npm 5.2, которая позволяет вам выполнять команды CLI и исполняемые файлы, размещенные в локальном node_modules — это означает, что глобальные установки больше не требуются.
Если вы ранее использовали приложение create-react-app, это должно выглядеть очень знакомо. Дополнительной флаг —typescript говорит CRA использовать TypeScript в качестве синтаксиса по умолчанию и добавить соответствующую конфигурацию, чтобы он работал «из коробки».
Это создаст следующие файлы и структуру папок:
my-app/ ├─ .gitignore ├─ node_modules/ ├─ public/ ├─ src/ | — — index.tsx | — — registerServiceWorker.ts | — — logo.svg | — — App.tsx | — — App.test.tsx | — — App.css | — — index.css | — — assets/ ├─ package.json ├─ tsconfig.json ├─ tsconfig.test.json └─ tslint.json
Ниже описание каждой части:
- tsconfig.json объявляет параметры TypeScript. Он находится в корне проекта и указывает параметры компилятора и файлы для включения.
- tslint.json — это настройки линтера, которые будут использоваться TSLint.
- public — это папка статических ресурсов, которые будут доступны пользователям, такие как документ HTML и файл манифеста.
- src содержит код пользовательского приложения. Это включает в себя наши компоненты TypeScript и стили CSS. Традиционный файл index.js был заменен на index.tsx в качестве точки входа.
Изменения React под TypeScript
Чтобы использовать React с TypeScript, вы должны внести небольшие изменения в подходе создания стандартного приложения React.
Используйте .tsx файлы для JSX
В дополнение к новому расширению файлов .ts для TypeScript есть также новое расширение файла .tsx. Это расширение, которое вы должны использовать каждый раз, когда включаете синтаксис JSX в файл компонента React. TypeScript способен компилировать JSX напрямую в JavaScript.
Импорт React и ReactDOM
Вы можете заметить, что в компонентах по умолчанию используется следующий синтаксис:
import * as React from 'react'; import * as ReactDOM from 'react-dom';
С TypeScript вы больше не сможете делать стандартные импорты фида:
import React from 'react';
React экспортируется как модуль CommonJS, который не использует default export. На данный момент, не обязательно точно знать, почему, а просто знать, как вы должны импортировать React, чтобы он работал. Это также означает, что вы объявляете свои компоненты как:
class App extends React.Component {...}
Создание компонент
Одна из лучших особенностей использования TypeScript — вам больше не нужно использовать пакет prop-types. Есть небольшая магия при изучения использования TypeScript для props и state, но как только вы его поймете, он станет гораздо более мощным, чем методология React по умолчанию.
Вы определите интерфейс props для каждого из компонентов, которым вы передаете параметры. Вы определяете интерфейс объекта и где у каждого ключа может быть свой тип данных. Кроме того, вы можете объявить интерфейс для состояния (state) компоненты.
Функциональный компонент без хранения состояния
Чтобы продемонстрировать функциональный компонент с props, мы заменим заголовок <h1> в App.tsx нашим собственным компонентом <Header />. Создайте файл ./src/Header.tsx. Он получает параметр name. Внутри нашего файла мы создадим функциональный компонент:
import * as React from 'react'; interface IProps { name?: string; } const Header: React.SFC<IProps> = (props: IProps) => ( <h1>Hello, {props.name}! Welcome to React and TypeScript.</h1> ); Header.defaultProps = { name: 'world', }; export default Header;
Начнем с импорта React. Затем мы объявляем интерфейс IProps с единственным параметром name. Мы указали что параметр необязательный, это задается симфолом “?”. Обозначение ключа как необязательного означает, что входной параметр может быть или string или undefined.
При создании компоненты Header, обратите внимание на React.SFC<Props>. «SFC» обозначает функциональный компонент без сохранения состояния в прототип. Хотя это объявление не является обязательным, оно позволяет нам использовать defaultProps.
Далее, мы объявляем тип входного параметра как IProps, ссылающийся на созданный нами интерфейс.
Компонент класса
Чтобы показать основы компонента класса, мы заменим описание <p> в App.tsx на счетчик. Одним из ключевых различий между классом и функциональным компонентом является то, что компонент класса может поддерживать свое собственное состояние. Другим основным отличием является возможность доступа к методам жизненного цикла, описание которых выходит за рамки данного руководства.
Создайте файл ./src/Description.tsx и добавьте следующий код.
import * as React from 'react'; interface IProps { countBy?: number; } interface IState { count: number; } class Description extends React.Component<IProps, IState> { public static defaultProps: Partial<IProps> = { countBy: 1, }; public state: IState = { count: 0, }; public increase = () => { const countBy: number = this.props.countBy!; const count = this.state.count + countBy; this.setState({ count }); }; public render() { return ( <div> <p>My favorite number is {this.state.count}</p> <button onClick={this.increase}>Increase</button> </div> ); } } export default Description;
Мы начнем с объявления интерфейса для IProps и IState. Будет необязательный счетчик вызовов счетчика, который будет определять значение приращения. Сам компонент будет вести подсчет, используя свое состояние.
Компонент объявлен с типами IProps и IState как class Description extends React.Component<IProps, IState> { и defaultProps объявлен как статическая переменная. State инициализируется со счетчиком 0.
Ваше create-react-app с компонентами TypeScript
Внутри нашего App.tsx мы импортируем только что созданные компоненты и заменяем HTML по умолчанию из CRA. Параметры name и countBy должны соответствовать типам, объявленным в дочернем компоненте. Поскольку props являются необязательными, они также могут быть undefined, и будет использоваться defaultProps.
import * as React from 'react'; import './App.css'; import Description from './Description'; import Header from './Header'; import logo from './logo.svg'; class App extends React.Component { public render() { return ( <div className="App"> <header className="App-header"> <img src={logo} className="App-logo" alt="logo" /> <Header name="REACT" /> </header> <Description countBy={3} /> </div> ); } } export default App;
И это все, что вам нужно для начала работы с TypeScript в React! Чтобы увидеть, как работает ваше приложение запустите следующую команду в консоли:
npm start