Rel 511 руководство по применению

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    1/272

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    2/272

    COPYRIGHT

    WE RESERVE ALL RIGHTS TO THIS DOCUMENT, EVEN IN THE EVENT THAT A
    PATENT IS ISSUED AND A DIFFERENT

    COMMERCIAL PROPRIETARY RIGHT IS REGISTERED. IMPROPER USE, IN
    PARTICULAR REPRODUCTION AND DIS-SEMINATION TO THIRD PARTIES, IS NOT
    PERMITTED.

    THIS DOCUMENT HAS BEEN CAREFULLY CHECKED. IF THE USER
    NEVERTHELESS DETECTS ANY ERRORS, HE IS

    ASKED TO NOTIFY US AS SOON AS POSSIBLE.

    THE DATA CONTAINED IN THIS MANUAL IS INTENDED SOLELY FOR THE
    PRODUCT DESCRIPTION AND IS NOT TO BE

    DEEMED TO BE A STATEMENT OF GUARANTEED PROPERTIES. IN THE
    INTERESTS OF OUR CUSTOMERS, WE CON-

    STANTLY SEEK TO ENSURE THAT OUR PRODUCTS ARE DEVELOPED TO THE
    LATEST TECHNOLOGICAL STAN-

    DARDS. AS A RESULT, IT IS POSSIBLE THAT THERE MAY BE SOME
    DIFFERENCES BETWEEN THE HW/SW PRODUCT

    AND THIS INFORMATION PRODUCT.

    Manufacturer:

    ABB Automation Products AB

    Substation Automation Division

    SE-721 59 Västerås

    Sweden

    Tel: +46 (0) 21 34 20 00

    Fax: +46 (0) 21 14 69 18

    Internet: http://www.abb.se

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    3/272

    Contents

    PageChapter

    Chapter 1 Introduction
    ……………………………………………………………
    1

    Introduction to the technical reference manual
    ……………………………… 2About the complete set of
    manuals to a terminal………………………. 2Design of the
    Technical reference manual (TRM) ……………………..
    3Related
    documents……………………………………………………………….
    6

    Chapter 2
    General…………………………………………………………………..
    7

    Terminal
    identification………………………………………………………………..
    8

    General terminal parameters
    …………………………………………………. 8Basic
    protection parameters
    …………………………………………………..
    8Calendar and clock
    ……………………………………………………………..
    12

    Technical data
    ………………………………………………………………………..
    13Case dimensions
    ………………………………………………………………..
    13Weight
    ………………………………………………………………………………
    17Unit
    …………………………………………………………………………………..
    17Environmental
    properties……………………………………………………..
    17

    Chapter 3 Common functions
    ………………………………………………. 21

    Time synchronisation
    (TIME)…………………………………………………….
    22Application
    …………………………………………………………………………
    22Function block
    ……………………………………………………………………
    22Input and output signals
    ………………………………………………………
    22Setting parameters
    ……………………………………………………………..
    23

    Setting group selector
    (GRP)…………………………………………………….
    24Application
    …………………………………………………………………………
    24Logic diagram
    …………………………………………………………………….
    24Function block
    ……………………………………………………………………
    24Input and output signals
    ………………………………………………………
    25

    Setting lockout (HMI)
    ……………………………………………………………….
    26Application
    …………………………………………………………………………
    26

    Function block
    ……………………………………………………………………
    26Logic diagram
    …………………………………………………………………….
    26Input and output signals
    ………………………………………………………
    27

    Setting parameters
    ……………………………………………………………..
    27I/O system configurator (IOP)
    …………………………………………………… 28

    Application
    …………………………………………………………………………
    28Logic diagram
    …………………………………………………………………….
    28Function block
    ……………………………………………………………………
    29Input and output signals
    ………………………………………………………
    29

    Self supervision (INT)
    ………………………………………………………………
    30Application
    …………………………………………………………………………
    30Function block
    ……………………………………………………………………
    30

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    4/272

    Contents

    Logic diagram
    …………………………………………………………………….
    31Input and output
    signals……………………………………………………….
    33Technical data
    ……………………………………………………………………
    33

    Logic function blocks
    ……………………………………………………………….
    34Application
    …………………………………………………………………………
    34Inverter function block (INV)
    ………………………………………………… 34OR
    function block
    (OR)………………………………………………………..
    34AND function block (AND)
    ……………………………………………………
    35Timer function block (TM)
    …………………………………………………….
    36Timer long function block (TL)
    ……………………………………………… 37Pulse
    timer function block
    (TP)……………………………………………..
    38Extended length pulse function block
    (TQ)…………………………….. 38Exclusive OR function
    block (XO)………………………………………….
    39Set-reset function block
    (SR)………………………………………………..
    40Set-reset with memory function block (SM)
    ……………………………. 41Controllable gate function
    block (GT) ……………………………………. 41

    Settable timer function block
    (TS)…………………………………………. 42Technical
    data
    ……………………………………………………………………
    43

    Blocking of signals during test
    …………………………………………………..
    44Application
    …………………………………………………………………………
    44Function
    block…………………………………………………………………….
    44Input and output
    signals……………………………………………………….
    44

    Chapter 4 Line impedance
    …………………………………………………….
    45

    Distance protection
    (ZM)…………………………………………………………..
    46Application
    …………………………………………………………………………
    46

    Functionality……………………………………………………………………….
    48Function block, zone 1-
    3……………………………………………………..
    50Function block, zone
    4…………………………………………………………
    51Function block, zone
    5…………………………………………………………
    52Logic diagram
    …………………………………………………………………….
    52Input and output signals, zone
    1-3………………………………………… 55Input and
    output signals, zone
    4…………………………………………… 56Input and
    output signals, zone
    5…………………………………………… 57Setting
    parameters, general
    ………………………………………………… 57Setting
    parameters, zone 1-3
    ………………………………………………. 58Setting
    parameters, zone
    4…………………………………………………..
    60Setting parameters, zone
    5………………………………………………….. 62

    Setting parameters, directional measuring element
    ………………… 64Technical data
    ……………………………………………………………………
    64Automatic switch onto fault logic
    (SOTF)……………………………………. 66

    Application
    …………………………………………………………………………
    66Functionality……………………………………………………………………….
    66Function
    block…………………………………………………………………….
    66Logic diagram
    …………………………………………………………………….
    67Input and output
    signals……………………………………………………….
    67Setting parameters
    ……………………………………………………………..
    67Technical data
    ……………………………………………………………………
    68

    Local acceleration logic
    (ZCLC)…………………………………………………
    69Application
    …………………………………………………………………………
    69

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    5/272

    Contents

    Functionality
    ………………………………………………………………………
    69Function block
    ……………………………………………………………………
    69Logic diagram
    …………………………………………………………………….
    70

    Input and output signals
    ………………………………………………………
    70Setting parameters
    ……………………………………………………………..
    71General fault criteria (GFC)
    ………………………………………………………
    72

    Application
    …………………………………………………………………………
    72Functionality
    ………………………………………………………………………
    72Function block
    ……………………………………………………………………
    73Logic diagram
    …………………………………………………………………….
    73Input and output signals
    ………………………………………………………
    77Setting parameters
    ……………………………………………………………..
    78Technical data
    ……………………………………………………………………
    80

    Power swing detection (PSD)
    ……………………………………………………
    82Application
    …………………………………………………………………………
    82Functionality
    ………………………………………………………………………
    82

    Function block
    ……………………………………………………………………
    83Logic diagram
    …………………………………………………………………….
    84Input and output signals
    ………………………………………………………
    85Setting parameters
    ……………………………………………………………..
    85Technical data
    ……………………………………………………………………
    87

    Scheme communication logic for distanceprotection functions
    (ZCOM) …………………………………………………..
    89

    Application
    …………………………………………………………………………
    89Functionality
    ………………………………………………………………………
    89Function block
    ……………………………………………………………………
    90Logic diagram
    …………………………………………………………………….
    90Input and output signals
    ………………………………………………………
    92

    Setting parameters
    ……………………………………………………………..
    93Technical data
    ……………………………………………………………………
    93

    Current reversal and WEI logic for distance protection
    (ZCAL)……… 94Application
    …………………………………………………………………………
    94Functionality
    ………………………………………………………………………
    94Function block
    ……………………………………………………………………
    95Logic diagram
    …………………………………………………………………….
    96Input and output signals
    ………………………………………………………
    97Setting parameters
    ……………………………………………………………..
    99Technical data
    ……………………………………………………………………
    99

    Chapter 5 Current
    ……………………………………………………………….
    101

    Instantaneous overcurrent protection (IOC)
    ……………………………… 102Application
    ……………………………………………………………………….
    102Functionality
    …………………………………………………………………….
    102Function block
    ………………………………………………………………….
    102Logic diagram
    …………………………………………………………………..
    103Input and output signals
    …………………………………………………….
    103Setting parameters
    ……………………………………………………………
    104Technical data
    ………………………………………………………………….
    105

    Time delayed overcurrent protection (TOC)
    ……………………………… 106Application
    ……………………………………………………………………….
    106

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    6/272

    Contents

    Functionality……………………………………………………………………..
    106Function
    block…………………………………………………………………..
    106Logic diagram
    …………………………………………………………………..
    107Input and output
    signals……………………………………………………..
    107Setting parameters
    ……………………………………………………………
    108Technical data
    ………………………………………………………………….
    109

    Two step time delayed phase overcurrent protection (TOC2)
    ……… 110Application
    ……………………………………………………………………….
    110Functionality……………………………………………………………………..
    110Function
    block…………………………………………………………………..
    110Logic diagram
    …………………………………………………………………..
    111Input and output
    signals……………………………………………………..
    111Setting parameters
    ……………………………………………………………
    112Technical data
    ………………………………………………………………….
    113

    Two step time delayed directional phaseovercurrent protection
    (TOC3) ………………………………………………..
    115

    Application
    ……………………………………………………………………….
    115Functionality……………………………………………………………………..
    115Function
    block…………………………………………………………………..
    116Logic diagram
    …………………………………………………………………..
    116Input and output
    signals……………………………………………………..
    120Setting parameters
    ……………………………………………………………
    121Technical data
    ………………………………………………………………….
    122

    Definite and inverse time-delayed residualovercurrent protection
    (TEF) …………………………………………………..
    124

    Application
    ……………………………………………………………………….
    124Functionality……………………………………………………………………..
    124Function
    block…………………………………………………………………..
    125

    Logic diagram
    …………………………………………………………………..
    126Input and output
    signals……………………………………………………..
    127Setting parameters
    ……………………………………………………………
    127

    Scheme communication logic for residualovercurrent protection
    (EFC) …………………………………………………
    129

    Application
    ……………………………………………………………………….
    129Functionality……………………………………………………………………..
    129Function
    block…………………………………………………………………..
    129Logic diagram
    …………………………………………………………………..
    130Input and output
    signals……………………………………………………..
    130Setting parameters
    ……………………………………………………………
    131Technical data
    ………………………………………………………………….
    131

    Current reversal and weak end infeed logic for

    residual overcurrent protection (EFCA)
    ……………………………………. 132Application
    ……………………………………………………………………….
    132Design……………………………………………………………………………..
    132Function
    block…………………………………………………………………..
    133Logic diagram
    …………………………………………………………………..
    133Input and output
    signals……………………………………………………..
    134Setting parameters
    ……………………………………………………………
    135Technical data
    ………………………………………………………………….
    135

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    7/272

    Contents

    Chapter 6 Voltage
    ……………………………………………………………….
    137

    Time delayed undervoltage protection (TUV)
    ……………………………. 138

    Application
    ……………………………………………………………………….
    138Function block
    ………………………………………………………………….
    138Logic diagram
    …………………………………………………………………..
    138Input and output signals
    …………………………………………………….
    139Setting parameters
    ……………………………………………………………
    139Technical data
    ………………………………………………………………….
    140

    Time delayed overvoltage protection (TOV)
    ……………………………… 141Application
    ……………………………………………………………………….
    141Functionality
    …………………………………………………………………….
    141Function block
    ………………………………………………………………….
    141Logic diagram
    …………………………………………………………………..
    142Input and output signals
    …………………………………………………….
    142

    Setting parameters
    ……………………………………………………………
    143Technical data
    ………………………………………………………………….
    144

    Chapter 7 Secondary system supervision
    …………………………… 145

    Fuse failure supervision
    (FUSE)………………………………………………
    146Application
    ……………………………………………………………………….
    146Functionality
    …………………………………………………………………….
    146Function block
    ………………………………………………………………….
    146Logic diagram
    …………………………………………………………………..
    147Input and output signals
    …………………………………………………….
    148

    Setting parameters
    ……………………………………………………………
    148Technical data
    ………………………………………………………………….
    149

    Chapter 8 Control
    ……………………………………………………………….
    151

    Synchrocheck (SYN)
    ……………………………………………………………..
    152Application
    ……………………………………………………………………….
    152Functionality
    …………………………………………………………………….
    152Function block
    ………………………………………………………………….
    153Logic diagram
    …………………………………………………………………..
    154Input and output signals
    …………………………………………………….
    155

    Setting parameters
    ……………………………………………………………
    156Technical data
    ………………………………………………………………….
    158

    Automatic reclosing function (AR)
    …………………………………………… 159Application
    ……………………………………………………………………….
    159Functionality
    …………………………………………………………………….
    159Function block
    ………………………………………………………………….
    160Input and output signals
    …………………………………………………….
    160Setting parameters
    ……………………………………………………………
    163Technical data
    ………………………………………………………………….
    165

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    8/272

    Contents

    Chapter 9
    Logic…………………………………………………………………..
    167

    Trip logic (TR)
    ……………………………………………………………………….
    168

    Application
    ……………………………………………………………………….
    168Functionality……………………………………………………………………..
    168Function
    block…………………………………………………………………..
    169Logic diagram
    …………………………………………………………………..
    169Input and output
    signals……………………………………………………..
    173Setting parameters
    ……………………………………………………………
    174Technical data
    ………………………………………………………………….
    175

    High speed binary output logic (HSBO)
    ……………………………………. 176Application
    ……………………………………………………………………….
    176Functionality……………………………………………………………………..
    176Function
    block…………………………………………………………………..
    176Logic diagram
    …………………………………………………………………..
    177Input and output
    signals……………………………………………………..
    178Setting parameters
    ……………………………………………………………
    179

    Serial
    communication……………………………………………………………..
    181Application, common
    …………………………………………………………
    181Design,
    common……………………………………………………………….
    181

    Serial communication, SPA (SPA-bus V 2.4
    protocol)………………… 183Application
    ……………………………………………………………………….
    183Design……………………………………………………………………………..
    183Setting parameters
    ……………………………………………………………
    183Technical data
    ………………………………………………………………….
    184

    Serial communication, IEC (IEC 60870-5-103 protocol)
    ……………… 185Application
    ……………………………………………………………………….
    185Design……………………………………………………………………………..
    185

    IEC 60870-5-103 information types
    …………………………………….. 185Function
    block…………………………………………………………………..
    192Input and output
    signals……………………………………………………..
    192Setting parameters
    ……………………………………………………………
    193Technical data
    ………………………………………………………………….
    193

    Serial communication, LON
    …………………………………………………….
    194Application
    ……………………………………………………………………….
    194Design……………………………………………………………………………..
    194Technical data
    ………………………………………………………………….
    194

    Event function (EV)
    ………………………………………………………………..
    195Application
    ……………………………………………………………………….
    195Design……………………………………………………………………………..
    195

    Function
    block…………………………………………………………………..
    196Input and output
    signals……………………………………………………..
    197Setting parameters
    ……………………………………………………………
    198

    Chapter 10
    Monitoring…………………………………………………………..
    201

    Disturbance report (DRP)
    ……………………………………………………….
    202Application
    ……………………………………………………………………….
    202Functionality……………………………………………………………………..
    202Function
    block…………………………………………………………………..
    203Input and output
    signals……………………………………………………..
    204

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    9/272

    Contents

    Setting parameters
    ……………………………………………………………
    204Technical data
    ………………………………………………………………….
    207

    Indications…………………………………………………………………………….
    208

    Application
    ……………………………………………………………………….
    208Functionality
    …………………………………………………………………….
    208Disturbance recorder
    ……………………………………………………………..
    209

    Application
    ……………………………………………………………………….
    209Functionality
    …………………………………………………………………….
    209Technical data
    ………………………………………………………………….
    210

    Event recorder
    ………………………………………………………………………
    211Application
    ……………………………………………………………………….
    211Design
    …………………………………………………………………………….
    211Technical data
    ………………………………………………………………….
    211

    Fault locator (FLOC)
    ………………………………………………………………
    212Application
    ……………………………………………………………………….
    212Functionality
    …………………………………………………………………….
    212

    Function block
    ………………………………………………………………….
    213Input and output signals
    …………………………………………………….
    213Setting parameters
    ……………………………………………………………
    214Technical data
    ………………………………………………………………….
    215

    Monitoring of AC analogue measurements
    ………………………………. 216Application
    ……………………………………………………………………….
    216Functionality
    …………………………………………………………………….
    216Function block
    ………………………………………………………………….
    216Input and output signals
    …………………………………………………….
    217Setting parameters
    ……………………………………………………………
    218Technical data
    ………………………………………………………………….
    228

    Monitoring of DC analogue measurements
    ………………………………. 229

    Application
    ……………………………………………………………………….
    229Function block
    ………………………………………………………………….
    229Input and output signals
    …………………………………………………….
    229Setting parameters
    ……………………………………………………………
    230Technical data
    ………………………………………………………………….
    233

    Chapter 11 Hardware
    modules………………………………………………
    235

    Modules
    ……………………………………………………………………………….
    236Transformer input module (TRM)
    ……………………………………………. 238

    Design
    …………………………………………………………………………….
    238

    Technical data
    ………………………………………………………………….
    238A/D-conversion module (ADM)
    ……………………………………………….. 240

    Design
    …………………………………………………………………………….
    240Binary I/O capabilities
    …………………………………………………………….
    241

    Application
    ……………………………………………………………………….
    241Design
    …………………………………………………………………………….
    241Technical data
    ………………………………………………………………….
    241

    Binary input module (BIM)
    ………………………………………………………
    243Application
    ……………………………………………………………………….
    243Design
    …………………………………………………………………………….
    243Function block
    ………………………………………………………………….
    243Input and output signals
    …………………………………………………….
    243

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    10/272

    Contents

    Binary output module (BOM)
    …………………………………………………..
    245Application
    ……………………………………………………………………….
    245Design……………………………………………………………………………..
    245Function
    block…………………………………………………………………..
    246Input and output
    signals……………………………………………………..
    246

    Power supply module (PSM)
    …………………………………………………..
    247Application
    ……………………………………………………………………….
    247Design……………………………………………………………………………..
    247Function
    block…………………………………………………………………..
    247Input and output
    signals……………………………………………………..
    247Technical data
    ………………………………………………………………….
    248

    Human-machine-interface modules (HMI)
    ………………………………… 249Application
    ……………………………………………………………………….
    249Design……………………………………………………………………………..
    249Technical data
    ………………………………………………………………….
    250

    Serial communication modules
    (SCM)……………………………………… 251

    Design, SPA/IEC
    ………………………………………………………………
    251Design, LON
    …………………………………………………………………….
    251Technical data
    ………………………………………………………………….
    251

    Chapter 12 Diagrams
    …………………………………………………………….
    253

    Terminal diagrams
    …………………………………………………………………
    254Terminal diagram, REL 511-C1
    ………………………………………….. 254

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    11/272

    1

    About this chapter Chapter 1

    Introduction

    Chapter 1 Introduction

    About this chapter

    This chapter introduces you to the manual as such.

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    12/272

    2

    Introduction to the technical referencemanual

    Chapter 1

    Introduction

    1 Introduction to the technical reference manual

    1.1 About the complete set of manuals to a terminal

    The complete package of manuals to a terminal is named users
    manual (UM). The Us-

    ers manual consists of four different manuals:

    The Application Manual (AM) contains descriptions, such as
    application and func-

    tionality descriptions as well as setting calculation examples
    sorted per function. The

    application manual should be used when designing and engineering
    the protection ter-

    minal to find out where and for what a typical protection
    function could be used. The

    manual should also be used when calculating settings and
    creating configurations.

    The Technical Reference Manual (TRM) contains technical
    descriptions, such as

    function blocks, logic diagrams, input and output signals,
    setting parameter tables and

    technical data sorted per function. The technical reference
    manual should be used as atechnical reference during the
    engineering phase, installation and commissioning phase

    and during the normal service phase.

    The Operator´s Manual (OM) contains instructions on how to
    operate the protection

    terminal during normal service (after commissioning and before
    periodic maintenance

    tests). The operator´s manual could be used to find out how to
    handle disturbances or

    how to view calculated and measured network data in order to
    determine the reason of

    a fault.

    The Installation and Commissioning Manual (ICM) contains
    instructions on how to

    install and commission the protection terminal. The manual can
    also be used as a refer-

    ence if a periodic test is performed. The manual covers
    procedures for mechanical and

    electrical installation, energising and checking of external
    circuitry, setting and config-

    uration as well as verifying settings and performing a
    directionality test. The chapters

    and sections are organised in the chronological order (indicated
    by chapter/section

    numbers) the protection terminal should be installed and
    commissioned.

    Application

    manual

    Technical

    reference

    manual

    Installation and

    commissioning

    manual

    Operator´s

    manual

    en01000044.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    13/272

    3

    Introduction to the technical referencemanual

    Chapter 1

    Introduction

    1.2 Design of the Technical reference manual (TRM)

    The description of each terminal related function follows the
    same structure (where ap-

    plicable):

    Application

    States the most important reasons for the implementation of a
    particular protection

    function.

    Functionality/Design

    Presents the general concept of a function.

    Function block

    Each function block is imaged by a graphical symbol.

    Input signals are always on the left side, and output signals on
    the right side. Settings

    are not displayed. A special kind of settings are sometimes
    available. These are sup-

    posed to be connected to constants in the configuration scheme,
    and are therefore de-

    picted as inputs. Such signals will be found in the signal list
    but described in the settings

    table.

    Figure 1: Function block symbol example

    Logic diagram

    The description of the design is chiefly based on simplified
    logic diagrams, which use

    IEC symbols, for the presentation of different functions,
    conditions etc. The functions

    are presented as a closed block with the most important internal
    logic circuits and con-

    figurable functional inputs and outputs.

    Completely configurable binary inputs/outputs and functional
    inputs/outputs enable the

    user to prepare the REx 5xx with his own configuration of
    different functions, accord-ing to application needs and standard
    practice.

    TUV

    BLOCK

    BLKTR

    VTSU

    TRIP

    STL1

    STL2

    STL3

    START

    xx00000207.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    14/272

    4

    Introduction to the technical referencemanual

    Chapter 1

    Introduction

    Figure 2: Function block diagram example

    The names of the configurable logic signals consist of two parts
    divided by dashes. The

    first part consists of up to four letters and presents the
    abbreviated name for the corre-

    sponding function. The second part presents the functionality of
    the particular signal.

    According to this explanation, the meaning of the signal
    TUV—BLKTR is as follows.

    • The first part of the signal, TUV- represents the adherence to
    the Time delayed Un-

    der-Voltage function.

    • The second part of the signal name, BLKTR informs the user
    that the signal will

    BLocK the TRip from the under-voltage function, when its value
    is a logical one (1).

    Different binary signals have special symbols with the following
    significance:

    • Signals drawn to the box frame to the left present functional
    input signals. It is pos-

    sible to configure them to functional output signals of other
    functions as well as to

    binary input terminals of the REx 5xx terminal. Examples are
    TUV—BLKTR, TUV-

    -BLOCK and TUV—VTSU.Signals in frames with a shaded area on
    their right side

    present the logical setting signals. Their values are high (1)
    only when the corre-

    sponding setting parameter is set to the symbolic value
    specified within the frame.

    Example is the signal Operation = On. These signals are not
    configurable. Their log-

    ical values correspond automatically to the selected setting
    value.The internal sig-

    nals are usually dedicated to a certain function. They are
    normally not available for

    TUV—BLKTR

    TUV—BLOCK

    TUV—VTSU >1

    STUL1

    STUL2

    &

    &

    &STUL3

    Operation = On

    >1& t

    tt

    15 msTUV—TRIP

    TUV—START

    TUV—STL1

    TUV—STL2

    TUV—STL3

    t15 ms

    t

    15 ms

    t

    15 ms

    t

    15 ms

    TRIP — cont.

    xx01000170.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    15/272

    5

    Introduction to the technical referencemanual

    Chapter 1

    Introduction

    configuration purposes. Examples in are signals STUL1, STUL2 and
    STUL3.The

    functional output signals, drawn to the box frame to the right,
    present the logical out-

    puts of functions and are available for configuration purposes.
    The user can config-

    ure them to binary outputs from the terminal or to inputs of
    different functions.Typical examples in are signals TUV—TRIP,
    TUV—START etc.

    Other internal signals configurated to other function blocks are
    written on a line with an

    identity and a cont. reference. An example is the signal TRIP —
    cont. The signal can be

    found in the corresponding function with the same identity.

    Input and output signals

    The signal lists contain all available input and output signals
    of the function block, one

    table for input signals and one for output signals.

    Table 1: Input signals for the TUV (TUV—) function block

    Table 2: Output signals for the TUV (TUV—) function block

    Setting parameters

    The setting parameters table contains all available settings of
    the function block. If afunction consists of more than one block,
    each block is listed in a separate table.

    Signal Description

    BLOCK Block undervoltage function

    BLKTR Block of trip from time delayed undervoltage function

    VTSU Block from voltage transformer circuit supervision

    Signal DescriptionTRIP Trip by time delayed undervoltage
    function

    STL1 Start phase undervoltage phase L1

    STL2 Start phase undervoltage phase L2

    STL3 Start phase undervoltage phase L3

    START Start phase undervoltage

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    16/272

    6

    Introduction to the technical referencemanual

    Chapter 1

    Introduction

    Table 3: Setting parameters for the time delayed undervoltage
    protection TUV(TUV—) function

    Technical data

    The technical data specifies the terminal in general, the
    functions and the hardware

    modules.

    1.3 Related documents

    Parameter Range Default Unit Description

    Operation Off, On Off — Operating mode for TUV function

    UPE< 10-100

    Step: 1

    70 % of

    U1b

    Operate phase voltage

    t 0.000-

    60.000

    Step: 0.001

    0.000 s Time delay

    Documents related to REL 511-C1*2.3 Identity number

    Operator’s manual 1MRK 506 096-UEN

    Installation and commissioning manual 1MRK 506 098-UEN

    Technical reference manual 1MRK 506 097-UEN

    Application manual 1MRK 506 116-UEN

    Technical overview brochure 1MRK 506 095-BEN

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    17/272

    7

    About this chapter Chapter 2

    General

    Chapter 2 General

    About this chapter

    This chapter describes the terminal in general.

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    18/272

    8

    Terminal identification Chapter 2

    General

    1 Terminal identification

    1.1 General terminal parameters

    Use the terminal identifiers to name the individual terminal for
    identification purposes.

    Use the terminal reports to check serial numbers of the terminal
    and installed modules

    and to check the firmware version.

    Identifiers and reports are accessible by using the HMI as well
    as by SMS or SCS sys-

    tems.

    Table 4: Set parameters for the general terminal parameters
    function

    1.2 Basic protection parameters

    Path in HMI-tree: Configuration/AnalogInputs/General

    Table 5: Setting parameters for analogInputs — General

    Path in HMI-tree: Configuration/AnalogInputs/U1-U5

    Parameter Range Default Unit Description

    Station Name 0-16 Station

    Name

    char Identity name for the station

    Station No 0-99999 0 — Identity number for the station

    Object Name 0-16 Object

    Name

    char Identity name for the protected

    object

    Object No 0-99999 0 — Identity number for the protected

    object

    Unit Name 0-16 Unit Name char Identity name for the terminal

    Unit No 0-99999 0 — Identity number for the terminal

    Parameter Range Default Unit Description

    CTEarth In/Out Out — Direction of CT earthing

    fr 50, 60, 16

    2/3

    50 Hz System frequency

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    19/272

    9

    Terminal identification Chapter 2

    General

    Table 6: Analog Inputs — Voltage

    Parameter Range Default Unit Description

    U1r * 10.000 —

    500.000

    Step: 0.001

    63.509 V Rated voltage of transformer on

    input U1

    U1b 30.000 —

    500.000

    Step:0.001

    63.509 V Base voltage of input U1

    U1Scale 1.000 —

    20000.000

    Step: 0.001

    2000.000 — Main voltage transformer ratio, input

    U1

    Name_U1 0 — 13 U1 char User-defined name of input U1

    U2r * 10.000 —

    500.000

    Step: 0.001

    63.509 V Rated voltage of transformer on

    input U2

    U2b 30.000 —

    500.000

    Step: 0.001

    63.509 V Base voltage of input U2

    U2Scale 1.000 —

    20000.000

    Step: 0.001

    2000.000 — Main voltage transformer ratio, input

    U2

    Name_U2 0 — 13 U2 char User-defined name of input U2

    U3r * 10.000 —

    500.000

    Step: 0.001

    63.509 V Rated voltage of transformer on

    input U3

    U3b 30.000 —

    500.000

    Step: 0.001

    63.509 V Base voltage of input U3

    U3Scale 1.000 —

    20000.000

    Step: 0.001

    2000.000 — Main voltage transformer ratio, input

    U3

    Name_U3 0 — 13 U3 char User-defined name of input U3

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    20/272

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    21/272

    11

    Terminal identification Chapter 2

    General

    Table 7: Analog Inputs — Current

    Parameter Range Default Unit Description

    I1r * 0.1000 —

    10.0000

    Step:

    0.0001

    1.0000 A Rated current of transformer on

    input I1

    I1b 0.1 — 10.0

    Step: 0.1

    1.0 A Base current of input I1

    I1Scale 1.000 —

    40000.000

    Step: 0.001

    2000.000 — Main current transformer ratio,

    input I1

    Name_I1 0 — 13 I1 char User-defined name of input I1

    I2r * 0.1000 —

    10.0000

    Step:

    0.0001

    1.0000 A Rated current of transformer on

    input I2

    I2b 0.1 — 10.0

    Step: 0.1

    1.0 A Base current of input I2

    I2Scale 1.000 —

    40000.000

    Step:0.001

    2000.000 — Main current transformer ratio,

    input I2

    Name_I2 0 — 13 I2 char User-defined name of input I2

    I3r * 0.1000 —

    10.0000

    Step:

    0.0001

    1.0000 A Rated current of transformer on

    input I3

    I3b 0.1 — 10.0

    Step: 0.1

    1.0 A Base current of input I3

    I3Scale 1.000 —

    40000.000

    Step: 0.001

    2000.000 — Main current transformer ratio,

    input I3

    Name_I3 0 — 13 I3 char User-defined name of input I3

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    22/272

    12

    Terminal identification Chapter 2

    General

    1.3 Calendar and clock

    Table 8: Calendar and clock

    I4r * 0.1000 —

    10.0000

    Step:

    0.0001

    1.0000 A Rated current of transformer on

    input I4

    I4b 0.1 — 10.0

    Step: 0.1

    1.0 A Base current of input I4

    I4Scale 1.000 —

    40000.000

    Step: 0.001

    2000.000 — Main current transformer ratio,

    input I4

    Name_I4 0 — 13 I4 char User-defined name of input I4

    I5r * 0.1000 —

    10.0000

    Step:

    0.0001

    1.0000 A Rated current of transformer on

    input I5

    I5b 0.1 — 10.0

    Step: 0.1

    1.0 A Base current of input I5

    I5Scale 1.000 —

    40000.000

    Step: 0.001

    2000.000 — Main current transformer ratio,

    input I5

    Name_I5 0 — 13 I5 char User-defined name of input I5

    *) Setting is done through the local HMI only

    Parameter Range Default Unit Description

    Parameter Range

    Built-in calender 30 years with leap years

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    23/272

    13

    Technical data Chapter 2

    General

    2 Technical data

    2.1 Case dimensions

    Figure 3: Hardware structure of the 1/2 of full width 19”
    case

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    24/272

    14

    Technical data Chapter 2

    General

    Diagrams (Dimensions)

    96000309.tif

    96000310.tif

    Case

    size

    A B C D E F G H I J K

    6U x 1/2 223.7 205.7 203.7 — —

    6U x 3/4 265.9 336 204.1 245.1 255.8 318 190.5 316 — 227.6 —

    6U x 1/1 448.3 430.3 428.3 465.1

    *)

    482.6

    *) equal to 19” (mm)

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    25/272

    15

    Technical data Chapter 2

    General

    Panel cut-outs for REx 500 series

    Flush mounting Semi-flush mounting

    97000025.tif97000026.tif

    Case size

    Cut-out dimensions (mm)

    A+/-1 B+/-1

    6U x 1/2 210.1 259.3

    6U x 3/4 322.4 259.3

    6U x 1/1 434.7 259.3

    C = 4-10 mm

    D = 16.5 mm

    E = 187.6 mm without protection cover, 228.6 mm with protection
    cover

    F = 106.5 mm

    G = 97.6 mm without protection cover, 138.6 mm with protection
    cover

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    26/272

    16

    Technical data Chapter 2

    General

    The flush mounting kits are available in three designs, suitable
    for 1/2, 3/4 or full width

    terminals and consists of four fasteners (4) with appropriate
    mounting details and a seal-

    ing strip (1) providing IP54 class protection for fastening to
    the terminal (5). The semi-

    flush mounting kit adds a distance frame (2). An additional
    sealing strip (3) can beordered for semiflush mounting to provide
    IP54 class protection.

    Figure 4: The flush mounting kit 

    xx00000129.eps

    1

    2

    3

    4

    5

    6

    xx01000049.vsden01000047.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    27/272

    17

    Technical data Chapter 2

    General

    2.2 Weight

    Table 9: Weight

    2.3 Unit

    Table 10: Unit

    2.4 Environmental properties

    Table 11: Temperature and humidity influence

    Case size (mm) A B C D E

    6U x 1/2 292 267.1

    6U x 3/4 404.3 379.4 272.8 390 247

    6U x 1/1 516 491.1

    Case size Weight

    6U x 1/2 ≤ 8.5 kg

    6U x 3/4 ≤ 11 kg

    6U x 1/1 ≤ 18 kg

    Material Steel sheet

    Front plate Aluminium profile with cut-out for HMI

    Surface treatment Aluzink preplated steel

    Finish Light beige (NCS 1704-Y15R)

    Degree of protection Front side: IP40, IP54 with optional
    sealing strip Rear side: IP20

    Parameter Rated value Nominal range Influence

    Storage temperature — -40 °C to +70 °C —

    Ambient temperature (duringoperation)

    +20 °C -5 °C to +55 °C 0.01%/°C, within nomi-nal range

    Correct function within

    operative range

    Relative humidity 10%-90% 10%-90% —

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    28/272

    18

    Technical data Chapter 2

    General

    Table 12: Auxiliary DC supply voltage influence on functionality
    during operation

    Table 13: Electromagnetic compatibility

    Table 14: Insulation

    Table 15: CE compliance

    Dependence on: Within nominal

    range

    Within operative range

    Ripple, max 12% or EL Negligible Correct function

    Interrupted auxiliary

    DC voltage

    Without reset

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    29/272

    19

    Technical data Chapter 2

    General

    Table 16: Mechanical tests

    Test Type test values Reference standards

    Vibration Class I IEC 60255-21-1

    Shock and bump Class I IEC 60255-21-2

    Seismic Class I IEC 60255-21-3

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    30/272

    20

    Technical data Chapter 2

    General

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    31/272

    21

    About this chapter Chapter 3

    Common functions

    Chapter 3 Common functions

    About this chapter

    This chapter presents the common functions in the terminal.

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    32/272

    22

    Time synchronisation (TIME) Chapter 3

    Common functions

    1 Time synchronisation (TIME)

    1.1 Application

    Use the time synchronization source selector to select a common
    source of absolute

    time for the terminal when it is a part of a protection system.
    This makes comparison of

    events and disturbance data between all terminals in a system
    possible.

    1.2 Function block

    1.3 Input and output signals

    Table 17: Input signals for the TIME (TIME-) function block

    Table 18: Output signals for the TIME (TIME-) function block

    xx00000171.vsd

    TIME-

    TIME

    MINSYNC

    SYNCSRC

    RTCERR

    SYNCERR

    Signal Description

    MINSYNC Minute pulse input

    SYNCSRC Synchronization source selector input. See settings
    for

    details.

    Signal Description

    RTCERR Real time clock error

    SYNCERR Time synchronisation error

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    33/272

    23

    Time synchronisation (TIME) Chapter 3

    Common functions

    1.4 Setting parameters

    Table 19: Setting parameters for the time synchronization source
    selector func-tion

    Parameter Range Default Unit Description

    SYNCSRC 0-5 0 — Selects the time synchronization

    source:

    0: No source. Internal real time clock

    is used without fine tuning.

    1: LON bus

    2: SPA bus

    3: IEC 870-5-103 bus

    4: Minute pulse, positive flank

    5: Minute pulse, negative flank

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    34/272

    24

    Setting group selector (GRP) Chapter 3

    Common functions

    2 Setting group selector (GRP)

    2.1 Application

    Use the four sets of settings to optimize the terminal’s
    operation for different system

    conditions. By creating and switching between fine tuned setting
    sets, either from the

    human-machine interface or configurable binary inputs, results
    in a highly adaptable

    terminal that can cope with a variety of system scenarios.

    2.2 Logic diagram

    Figure 5: Connection of the function to external circuits

    2.3 Function block

    GRP—ACTGRP1

    GRP—ACTGRP2

    GRP—ACTGRP3

    GRP—ACTGRP4

    IOx-Bly1

    IOx-Bly2

    IOx-Bly3

    IOx-Bly4

    +RL2

    en01000144.vsd

    ACTIVATE GROUP 4

    ACTIVATE GROUP 3

    ACTIVATE GROUP 2

    ACTIVATE GROUP 1

    xx00000153.vsd

    GRP—

    ACTIVEGROUP

    ACTGRP1

    ACTGRP2

    ACTGRP3

    ACTGRP4

    GRP1

    GRP2

    GRP3

    GRP4

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    35/272

    25

    Setting group selector (GRP) Chapter 3

    Common functions

    2.4 Input and output signals

    Table 20: Input signals for the ACTIVEGROUP (GRP—) function
    block

    Table 21: Output signals for the ACTIVEGROUP (GRP—) function
    block

    Signal Description

    ACTGRP1 Selects setting group 1 as active

    ACTGRP2 Selects setting group 2 as active

    ACTGRP3 Selects setting group 3 as active

    ACTGRP4 Selects setting group 4 as active

    Signal Description

    GRP1 Setting group 1 is active

    GRP2 Setting group 2 is active

    GRP3 Setting group 3 is active

    GRP4 Setting group 4 is active

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    36/272

    26

    Setting lockout (HMI) Chapter 3

    Common functions

    3 Setting lockout (HMI)

    3.1 Application

    Unpermitted or uncoordinated changes by unauthorized personnel
    may cause severe

    damage to primary and secondary power circuits. Use the setting
    lockout function to

    prevent unauthorized setting changes and to control when setting
    changes are allowed.

    By adding a key switch connected to a binary input a simple
    setting change control cir-

    cuit can be built simply allowing only authorized keyholders to
    make setting changes

    from the built-in HMI.

    3.2 Function block

    3.3 Logic diagram

    Figure 6: Connection and logic diagram for the BLOCKSET
    function

    xx00000154.vsd

    SETTING RESTRICTION

    BLOCKSET

    SettingRestrict=BlockRESTRICT

    SETTINGS

    HMI—BLOCKSET

    &SWITCH

    WITH KEY

    +

    Rex 5xx

    en01000152.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    37/272

    27

    Setting lockout (HMI) Chapter 3

    Common functions

    3.4 Input and output signals

    Table 22: Input signals for the SETTING RESTRICTION function
    block

    3.5 Setting parameters

    Table 23: Setting parameters for the setting lockout
    function

    Signal Description

    BLOCKSET Input signal to block setting and/or configuration
    changes

    from the local HMI. WARNING: Read the instructions
    before

    use. Default configuration to NONE-NOSIGNAL.

    Parameter Range Default Unit Description

    SettingRestrict Open,Block

    Open — Open: Setting parameters can bechanged.

    Block: Setting parameters can only

    be changed if the logic state of the

    BLOCKSET input is zero.

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    38/272

    28

    I/O system configurator (IOP) Chapter 3

    Common functions

    4 I/O system configurator (IOP)

    4.1 Application

    The I/O system configurator must be used in order for the
    terminal’s software to recog-

    nize added modules and to create internal address mappings
    between modules and pro-

    tections and other functions.

    4.2 Logic diagram

    Figure 7: Example of an I/O-configuration in the graphical tool
    CAP 531 for a REx 5xx

    with two BIMs.

    IOP1-

    S11

    S14

    S15

    S16

    S17

    S18

    S13

    S12

    S19

    S20

    S21

    S23

    S22

    I/OPosition

    S24

    S25

    S26

    S27

    S28

    S30

    S32

    S34

    S36

    IO01-

    IO02-

    I/O-module

    I/O-module

    POSITION ERROR

    BI1

    BI6

    .

    .

    .

    POSITION ERROR

    BI1

    BI6

    .

    .

    .

    en01000143.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    39/272

    29

    I/O system configurator (IOP) Chapter 3

    Common functions

    4.3 Function block

    4.4 Input and output signals

    Table 24: Output signals for the I/OPOSITION (IOPn-) function
    block

    xx00000238.vsd

    IOP1-

    I/OPOSITION

    S11

    S12

    S13

    S14

    S15

    S16

    S17

    S18

    S19

    S20

    S21

    S22

    S23

    S24

    S25

    S26

    S27S28

    S29

    S30

    S31

    S32

    S33

    S34

    S35

    S36

    Signal Description

    Snn Slot position nn (nn=11-39)

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    40/272

    30

    Self supervision (INT) Chapter 3

    Common functions

    5 Self supervision (INT)

    5.1 Application

    Use the local HMI, SMS or SCS system to view the status of the
    self-supervision func-

    tion. The self-supervision operates continuously and
    includes:

    • Normal micro-processor watchdog function

    • Checking of digitized measuring signals

    • Checksum verification of PROM contents and all types of signal
    communication

    5.2 Function block

    xx00000169.vsd

    INT—

    INTERNSIGNALS

    FAIL

    WARNING

    CPUFAIL

    CPUWARN

    ADC

    SETCHGD

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    41/272

    31

    Self supervision (INT) Chapter 3

    Common functions

    5.3 Logic diagram

    Figure 8: Hardware self-supervision, potential-free alarm
    contact.

    Power supply fault

    WatchdogTX overflowMaster resp.Supply fault

    ReBoot I/O

    Checksum fault

    Sending reports

    DSP fault

    Supply faultParameter check

    Power supplymodule

    I/O nodes

    A/D conv.module

    Main CPU

    &

    Fault

    Fault

    Fault

    Fault

    INTERNALFAIL

    I/O nodes = BIM, BOM, IOM  PSM, MIM or DCMDSP = Digital
    Signal Processorxxxx = Inverted signal

    99000034.vsd

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    42/272

    32

    Self supervision (INT) Chapter 3

    Common functions

    Figure 9: Software self-supervision, function block INTernal
    signals

    Checksum

    Node reports

    Synch error

    NO RX Data

    NO TX Clock

    Check RemError

    &

    >1

    >1

    INT—ADC

    Send Rem Error

    OK

    OK

    >1TIME-RTCERR INT—CPUWARN

    >1

    TIME-SYNCERR

    RTC-WARNING

    INT—CPUWARN

    INT—WARNING

    Watchdog

    Check CRC

    RAM check

    DSP Modules, 1-12

    OK

    OK

    OK&

    OKINT—CPUFAIL

    Parameter check

    Watchdog

    Flow control

    &

    OK

    OK

    OK&

    >1

    INT—CPUFAIL

    INT—ADC

    I/O node FAILINT—FAIL

    Start-up self-test Fault

    MainCPU

    Remoteterminal

    communication

    A/D Converter

    Module

    RTC-WARNING = DIFL-COMFAIL or  RTC1-COMFAIL +

      RTC2-COMFAIL

    I/O node = BIM, BOM, IOM, PSM, MIM, DCM  (described in the
    hardware design)

    99000035.vsd

    >1

    RTC-WARNING

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    43/272

    33

    Self supervision (INT) Chapter 3

    Common functions

    5.4 Input and output signals

    Table 25: Output signals for the INTERNSIGNALS (INT—) function
    block

    5.5 Technical data

    Table 26: Internal event list

    Signal Description

    FAIL Internal fail status

    WARNING Internal warning status

    CPUFAIL CPU module fail status

    CPUWARN CPU module warning status

    ADC A/D-converter error

    SETCHGD Setting changed

    Data Value

    Recording manner Continuous, event controlled

    List size 40 events, first in-first out

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    44/272

    34

    Logic function blocks Chapter 3

    Common functions

    6 Logic function blocks

    6.1 Application

    The user can with the available logic function blocks build
    logic functions and config-

    ure the terminal to meet application specific requirements.

    Different protection, control, and monitoring functions within
    the REx 5xx terminals

    are quite independent as far as their configuration in the
    terminal is concerned. The user

    can not change the basic algorithms for different functions. But
    these functions com-

    bined with the logic function blocks can be used to create
    application specific function-

    ality.

    6.2 Inverter function block (INV)

    The inverter function block INV has one input and one output,
    where the output is in

    inverse ratio to the input.

    Table 27: Input signals for the INV (IVnn-) function block

    Table 28: Output signals for the INV (IVnn-) function block

    6.3 OR function block (OR)

    The OR function is used to form general combinatory expressions
    with boolean vari-

    ables. The OR function block has six inputs and two outputs. One
    of the outputs is in-

    verted.

    Signal Description

    INPUT Logic INV-Input to INV gate

    Signal Description

    Out Logic INV-Output from INV gate

    xx00000158.vsd

    IV01-

    INV

    INPUT OUT

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    45/272

    35

    Logic function blocks Chapter 3

    Common functions

    Table 29: Input signals for the OR (Onnn-) function block

    Table 30: Output signals for the OR (Onnn-) function block

    6.4 AND function block (AND)

    The AND function is used to form general combinatory expressions
    with boolean vari-

    ables.The AND function block has four inputs and two outputs.
    One of the inputs and

    one of the outputs are inverted.

    Signal Description

    INPUT1 Input 1 to OR gate

    INPUT2 Input 2 to OR gate

    INPUT3 Input 3 to OR gate

    INPUT4 Input 4 to OR gate

    INPUT5 Input 5 to OR gate

    INPUT6 Input 6 to OR gate

    Signal Description

    OUT Output from OR gate

    NOUT Inverted output from OR gate

    xx00000159.vsd

    O001-

    OR

    INPUT1

    INPUT2

    INPUT3

    INPUT4

    INPUT5

    INPUT6

    OUT

    NOUT

    xx00000160.vsd

    A001-

    AND

    INPUT1

    INPUT2INPUT3

    INPUT4N

    OUT

    NOUT

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    46/272

    36

    Logic function blocks Chapter 3

    Common functions

    Table 31: Input signals for the AND (Annn-) function block

    Table 32: Output signals for the AND (Annn-) function block

    6.5 Timer function block (TM)

    The function block TM timer has drop-out and pick-up delayed
    outputs related to the

    input signal. The timer has a settable time delay (parameter T)
    between 0.000 and

    60.000 s in steps of 0.001 s.

    Table 33: Input signals for the TIMER (TMnn-) function block

    Table 34: Output signals for the TIMER (TMnn-) function
    block

    Signal Description

    INPUT1 Input 1 to AND gate

    INPUT2 Input 2 to AND gate

    INPUT3 Input 3 to AND gate

    INPUT4N Input 4 (inverted) to AND gate

    Signal Description

    OUT Output from AND gate

    NOUT Inverted output from AND gate

    Signal Description

    INPUT Input to timer

    T Time value. See setting parameters

    Signal Description

    OFF Output from timer, drop-out delayed

    ON Output from timer , pick-up delayed

    xx00000161.vsd

    TM01-

    TIMER

    INPUTT

    OFFON

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    47/272

    37

    Logic function blocks Chapter 3

    Common functions

    6.5.1 Setting parameters

    Table 35: Setting parameters for the Timer (TMnn-) function

    6.6 Timer long function block (TL)

    The function block TL timer with extended maximum time delay at
    pick-up and at drop-

    out, is identical with the TM timer. The difference is the
    longer time delay, settable be-

    tween 0.0 and 90000.0 s in steps of 0.1 s

    Table 36: Input signals for the TIMERLONG (TLnn-) function
    block

    Table 37: Output signals for the TIMERLONG (TLnn-) function
    block

    6.6.1 Setting parameters

    Table 38: Setting parameters for the TimerLong (TLnn-)
    function

    Parameter Range Default Unit Description

    T 0.000-

    60.000

    Step: 0.001

    0.000 s Delay for timer nn

    Signal Description

    INPUT Input to long timer

    T Time value. See setting parameters

    Signal Description

    OFF Output from long timer, drop-out delayed

    ON Output from long timer, pick-up delayed

    xx00000162.vsd

    TL01-

    TIMERLONG

    INPUT

    T

    OFF

    ON

    Parameter Range Default Unit Description

    T 0.0-90000.0

    Step:0.1

    0.0 s Delay for TLnn function

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    48/272

    38

    Logic function blocks Chapter 3

    Common functions

    6.7 Pulse timer function block (TP)

    The pulse function can be used, for example, for pulse
    extensions or limiting of opera-

    tion of outputs. The pulse timer TP has a settable length of a
    pulse between 0.000 s and60.000 s in steps of 0.010 s.

    Table 39: Input signals for the TP (TPnn-) function block

    Table 40: Output signals for the TP (TPnn-) function block

    6.7.1 Setting parameters

    Table 41: Setting parameters for the Pulse (TPnn-) function

    6.8 Extended length pulse function block (TQ)

    The function block TQ pulse timer with extended maximum pulse
    length, is identical

    with the TP pulse timer. The difference is the longer pulse
    length, settable between 0.0

    and 90000.0 s in steps of 0.1 s.

    Signal Description

    INPUT Input to pulse timer

    T Pulse length. See setting parameters

    Signal Description

    OUT Output from pulse timer

    xx00000163.vsd

    TP01-

    PULSE

    INPUT

    T

    OUT

    Parameter Range Default Unit Description

    T 0.000-

    60.000

    Step:0.010

    0.010 s Pulse length

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    49/272

    39

    Logic function blocks Chapter 3

    Common functions

    Table 42: Input signals for the PULSELONG (TQnn-) function
    block

    Table 43: Output signals for the PULSELONG (TQnn-) function
    block

    6.8.1 Setting parameters

    Table 44: Setting parameters for the PulseLong (TQnn-)
    function

    6.9 Exclusive OR function block (XO)

    The exclusive OR function XOR is used to generate combinatory
    expressions with

    boolean variables. The function block XOR has two inputs and two
    outputs. One of the

    outputs is inverted. The output signal is 1 if the input signals
    are different and 0 if they

    are equal.

    Signal Description

    INPUT Input to pulse long timer

    T Pulse length. See setting parameters

    Signal Description

    OUT Output from pulse long timer

    xx00000164.vsd

    TQ01-

    PULSELONG

    INPUT

    T

    OUT

    Parameter Range Default Unit Description

    T 0.0-90000.0

    Step: 0.1

    0.0 s Pulse length

    xx00000165.vsd

    XO01-

    XOR

    INPUT1

    INPUT2

    OUT

    NOUT

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    50/272

    40

    Logic function blocks Chapter 3

    Common functions

    Table 45: Input signals for the XOR (XOnn-) function block

    Table 46: Output signals for the XOR (XOnn-) function block

    6.10 Set-reset function block (SR)

    The Set-Reset (SR) function is a flip-flop that can set or reset
    an output from two inputs

    respectively. Each SR function block has two outputs, where one
    is inverted.

    Table 47: Input signals for the SR (SRnn-) function block

    Table 48: Output signals for the SR (SRnn-) function block

    Signal Description

    INPUT1 Input 1 to XOR gate

    INPUT2 Input 2 to XOR gate

    Signal Description

    OUT Output from XOR gate

    NOUT Inverted output from XOR gate

    Signal Description

    SET Input to SR flip-flop

    RESET Input to SR flip-flop

    Signal Description

    OUT Output from SR flip-flop

    NOUT Inverted output from SR flip-flop

    xx00000166.vsd

    SR01-

    SR

    SET

    RESET

    OUT

    NOUT

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    51/272

    41

    Logic function blocks Chapter 3

    Common functions

    6.11 Set-reset with memory function block (SM)

    The Set-Reset function SM is a flip-flop with memory that can
    set or reset an output

    from two inputs respectively. Each SM function block has two
    outputs, where one isinverted. The memory setting controls if the
    flip-flop after a power interruption will re-

    turn the state it had before or if it will be reset.

    Table 49: Input signals for the SRM (SMnn-) function block

    Table 50: Output signals for the SRM (SMnn-) function block

    Table 51: Setting parameters for the SRM (SMnn-) function

    6.12 Controllable gate function block (GT)

    The GT function block is used for controlling if a signal should
    be able to pass from the

    input to the output or not depending on a setting.

    Signal Description

    SET Input to SRM flip-flop

    RESET Input to SRM flip-flop

    Signal Description

    OUT Output from SRM flip-flop

    NOUT Inverted output from SRM flip-flop

    Parameter Range Default Unit Description

    Memory Off/On Off — Operating mode of the memory

    function

    xx00000382.vsd

    SM01-

    SRM

    SET

    RESET

    OUT

    NOUT

    xx00000380.vsd

    GT01-

    GT

    INPUT OUT

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    52/272

    42

    Logic function blocks Chapter 3

    Common functions

    Table 52: Input signals for the GT (GTnn-) function block

    Table 53: Output signals for the GT (GTnn-) function block

    6.12.1 Setting parameters

    Table 54: Setting parameters for the GT (GTnn-) function

    6.13 Settable timer function block (TS)

    The function block TS timer has outputs for delayed input signal
    at drop-out and at

    pick-up. The timer has a settable time delay between 0.00 and
    60.00 s in steps of 0.01 s.

    It also has an Operation setting On, Off that controls the
    operation of the timer.

    Table 55: Input signals for the TS (TSnn-) function block

    Table 56: Output signals for the TS (TSnn-) function block

    Signal Description

    INPUT Input to gate

    Signal Description

    Out Output from gate

    Parameter Range Default Unit Description

    Operation Off/On Off — Operating mode for GTn function

    Signal Description

    INPUT Input to timer

    Signal Description

    ON Output from timer, pick-up delayed

    OFF Output from timer, drop-out delayed

    xx00000381.vsd

    TS01-

    TS

    INPUT ON

    OFF

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    53/272

    43

    Logic function blocks Chapter 3

    Common functions

    6.13.1 Setting parameters

    Table 57: Setting parameters for the TS (TSn-) function

    6.14 Technical data

    Table 58: Available logic function blocks

    Parameter Range Default Unit Description

    Operation Off/On Off — Operating mode for TSn function

    T 0.00-60.00

    Step: 0.01

    0.00 s Delay for settable timer n

    Update rate Block Availability

    6 ms AND 30 gates

    OR 60 gates

    INV 20 inverters

    TM 10 timers

    TP 10 pulse timers

    SM 5 flip-flops

    GT 5 gates

    TS 5 timers

    200 ms TL 10 timers

    TQ 10 pulse timers

    SR 5 flip-flops

    XOR 39 gates

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    54/272

    44

    Blocking of signals during test Chapter 3

    Common functions

    7 Blocking of signals during test

    7.1 Application

    The protection and control terminals have a complex
    configuration with many included

    functions. To make the testing procedure easier, the terminals
    include the feature to in-

    dividually block a single, several or all functions.

    This means that it is possible to see when a function is
    activated or trips. It also enables

    the user to follow the operation of several related functions to
    check correct functional-

    ity and to check parts of the configuration etc.

    7.2 Function block

    7.3 Input and output signals

    Table 59: Input signals for the Test (TEST-) function block

    Table 60: Output signals for the Test (TEST-) function block

    TEST-

    TEST

    INPUT ACTIVE

    en01000074.vsd

    Signal Description

    INPUT Sets terminal in test mode when active

    Signal Description

    ACTIVE Terminal in test mode

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    55/272

    45

    About this chapter Chapter 4

    Line impedance

    Chapter 4 Line impedance

    About this chapter

    This chapter describes the line impedance functions in the
    terminal.

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    56/272

    46

    Distance protection (ZM) Chapter 4

    Line impedance

    1 Distance protection (ZM)

    1.1 Application

    The ZM distance protection function provides fast and reliable
    protection for overhead

    lines and power cables in all kinds of power networks. For each
    independent distance

    protection zone, full scheme design provides continuous
    measurement of impedance

    separately in three independent phase-to-phase measuring loops
    as well as in three in-

    dependent phase-to-earth measuring loops.

    Phase-to-phase distance protection is suitable as a basic
    protection function against

    two- and three-phase faults in all kinds of networks, regardless
    of the treatment of the

    neutral point. Independent setting of the reach in the reactive
    and the resistive direction

    for each zone separately, makes it possible to create fast and
    selective short circuit pro-

    tection in power systems.

    Phase-to-earth distance protection serves as basic earth fault
    protection in networks

    with directly or low impedance earthed networks. Together with
    an independent phase

    preference logic, it also serves as selective protection
    function at cross-country faults in

    isolated or resonantly earthed networks.

    Independent reactive reach setting for phase-to-phase and for
    phase-to-earth measure-

    ment secures high selectivity in networks with different
    protective relays used for short-

    circuit and earth-fault protection.

    R

     jX

    Rph-eRph-ph

    Xph-e

    Xph-ph

    Zline

    98000062.vmf

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    57/272

    47

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 10: Schematic presentation of the operating
    characteristic for one distance pro-

    tection zone in forward direction

    Distance protection with simplified setting parameters is
    available on request. It uses

    the same algorithm as the basic distance protection function.
    Simplified setting param-

    eters reduce the complexity of necessary setting procedures and
    make the operating

    characteristic automatically more adjusted to the needs in
    combined networks.

    Where:

    Xph-e = reactive reach for ph-e faults

    Xph-ph = reactive reach for ph-ph faults

    Rph-e = resistive reach for ph-e faults

    Rph-ph = resistive reach for ph-ph faults

    Zline = line impedance

     R

    xx00000713.vsd

     jX

    RFPERFPP

    X

    Zline

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    58/272

    48

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 11: Schematic presentation of the operating
    characteristic for one distance pro-

    tection zone in forward direction with simplified setting
    parameters

    The distance protection zones can operate, independently of each
    other, in directional

    (forward or reverse) or non-directional mode. This makes it
    suitable, together with dif-ferent communication schemes, for the
    protection of power lines and cables in complex

    network configurations, such as double-circuit, parallel lines,
    multiterminal lines, etc.

    Zone 1, 2 and 3 can issue phase selective signals, such as start
    and trip.

    The additional distance protection zones four and five have the
    same basic functionality

    as zone 1-3, but lack the possibility of issuing phase selective
    output signals.

    Distance protection zone 5 has shorter operating time than other
    zones, but also higher

    transient overreach. It should generally be used as a check zone
    together with the SOTF

    switch onto fault function or as a time delayed zone with time
    delay set longer than

    100ms.

    Basic distance protection function is generally suitable for use
    in non-compensated net-

    works. A special addition to the basic functions is available
    optionally for use on series

    compensated and adjacent lines where voltage reversals might
    disturb the correct direc-

    tional discrimination of a basic distance protection.

    1.2 Functionality

    Separate digital signal processors calculate the impedance as
    seen for different measur-

    ing loops in different distance protection zones. The results
    are updated each millisec-

    ond, separately for all measuring loops and each distance
    protection zone. Measurement

    of the impedance for each loop follows the differential
    equation, which considers com-

    plete line replica impedance, as presented schematically in
    figure 12.

    Where:

    X = reactive reach for all kinds of faults

    RFPP = resistive reach for phase-to-phase faults

    RFPE = resistive reach for phase-to-earth faults

    Zline = line impedance

    u t( ) R l Rf+( ) i t( )Xlω——

    ∆i t( )∆t

    ————⋅+⋅=

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    59/272

    49

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 12: Schematic presentation of impedance measuring
    principle.

    Settings of all line parameters, such as positive sequence
    resistance and reactance aswell as zero-sequence resistance and
    reactance, together with expected fault resistance

    for phase-to-phase and phase-to-earth faults, are independent
    for each zone. The oper-

    ating characteristic is thus automatically adjusted to the line
    characteristic angle, if the

    simplified operating characteristic has not been especially
    requested. The earth-return

    compensation factor for the earth-fault measurement is
    calculated automatically by the

    terminal itself.

    Voltage polarization for directional measurement uses continuous
    calculation and up-

    dating of the positive sequence voltage for each measuring loop
    separately. This secures

    correct directionality of the protection at different evolving
    faults within the complex

    network configurations. A memory retaining the pre-fault
    positive-sequence voltage se-cures reliable directional operation
    at close-up three-phase faults.

    Where:

    Rl = line resistance

    Rf = fault resistance

    Xl = line reactance

    ω 2πf

    f = frequency

    Rl

     jXl

    Rfu(t)

      i(t)

    98000063.vmf

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    60/272

    50

    Distance protection (ZM) Chapter 4

    Line impedance

    The distance protection function blocks are independent of each
    other for each zone.

    Each function block comprises a number of different functional
    inputs and outputs,

    which are freely configurable to different external functions,
    logic gates, timers and bi-

    nary inputs and outputs. This makes it possible to influence the
    operation of the com-plete measuring zone or only its tripping
    function by the operation of fuse-failure

    function, power swing detection function, etc.

    1.3 Function block, zone 1- 3

    Figure 13: ZM1 function block for single, two and/or three phase
    tripping

    Figure 14: ZM1 function block for three phase tripping

    Figure 15: ZM2 function block for single, two and/or three phase
    tripping

    xx00000173.vsd

    ZM1—

    ZM1

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    TRL1

    TRL2

    TRL3

    START

    STL1

    STL2

    STL3

    STND

    xx00000702.vsd

    ZM1—

    ZM1

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    START

    STND

    xx00000174.vsd

    ZM2—

    ZM2

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    TRL1

    TRL2

    TRL3

    START

    STL1

    STL2

    STL3STND

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    61/272

    51

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 16: ZM2 function block for three phase tripping

    Figure 17: ZM3 function block for single, two and/or three phase
    tripping

    Figure 18: ZM3 function block for three phase tripping

    1.4 Function block, zone 4

    Figure 19: ZM4 function block 

    xx00000703.vsd

    ZM2—

    ZM2

    BLOCK

    BLKTRVTSZ

    STCND

    TRIP

    STARTSTND

    xx00000175.vsd

    ZM3—

    ZM3

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    TRL1

    TRL2

    TRL3

    START

    STL1STL2

    STL3

    STND

    xx00000704.vsd

    ZM3—

    ZM3

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    START

    STND

    xx00000176.vsd

    ZM4—

    ZM4

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    START

    STND

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    62/272

    52

    Distance protection (ZM) Chapter 4

    Line impedance

    1.5 Function block, zone 5

    Figure 20: ZM5 function block

    1.6 Logic diagram

    Figure 21: Conditioning by a group functional input signal
    ZM1—STCND

    xx00000177.vsd

    ZM5—ZM5

    BLOCK

    BLKTR

    VTSZ

    STCND

    TRIP

    START

    STND

    99000557.vsd

    ZM1L1L2

    ZM1L2L3

    ZM1L3L1

    &

    &

    &

    &

    &

    &

    ZM1L1N

    ZM1L2N

    ZM1L3N

    ZM1—STCND

    STNDL1L2-cont.

    STNDL2L3-cont.

    STNDL3L1-cont.

    STNDL1N-cont.

    STNDL2N-cont.

    STNDL3N-cont.

    STZMPP-cont.

    STNDPE-cont.

    &ZM1—BLOCK

    ZM1—VTSZ ZM1—STND

    BLK-cont.

    >1

    >1

    >1

    >1

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    63/272

    53

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 22: Composition of starting signals in non-directional
    operating mode

    en00000488.vsd

    STNDL1N-cont.

    STNDL2N-cont.

    STNDL3N-cont.

    STNDL1L2-cont.

    STNDL2L3-cont.

    STNDL3L1-cont.

    >1

    >1

    >1

    >1

    &

    &

    &

    &

    BLK-cont.

    t15 ms

    t15 ms

    t15 ms

    t15 ms

    ZM1—START

    ZM1—STL3

    ZM1—STL2

    ZM1—STL1

  • 8/9/2019 ABB REL 511 Technical Reference Manual

    64/272

    54

    Distance protection (ZM) Chapter 4

    Line impedance

    Figure 23: Composition of starting signals in directional
    operating mode

    en00000489.vsd

    STNDL1N-cont.

    DIRL1N &

    &

    STNDL2N-cont.

    DIRL2N

    &

    STNDL3N-cont.

    DIRL3N

    &STNDL1L2-cont.

    DIRL1L2

    &

    STNDL2L3-cont.

    DIRL2L3

    &STNDL3L1-cont.

    DIRL3L1

    >1

    >1

    >1

    >1

    >1

    &g

Page 1

background image

Page 2

background image

94

АНАЛИТИКА

СЕТИ  РОССИИ

94

р

е

л

е

й

н

а

я

 з

а

щ

и

т

а

 и

 а

в

т

о

м

а

т

и

к

а

релейная защит

а и автома

тика

ТЕРМИНАЛЫ

СЕРИИ

«REL-511»

В

микропроцессорных

терминалах

 «REL-

511» 

при

возникновении

неисправности

цепей

переменного

напряжения

  «

звезды

» 

срабатыва

ет

функция

контроля

исправности

цепей

пере

менного

напряжения

 (FUSE). 

При

этом

она

бло

кирует

срабатывание

всех

зон

ДЗ

и

их

пуски

В

таком

случае

возможен

отказ

функции

ДЗ

при

возникновении

КЗ

на

ЛЭП

.

Для

отключения

междуфазных

КЗ

на

ЛЭП

возникающих

при

наличии

неисправности

це

пей

переменного

напряжения

  «

звезды

» 

и

как

следствие

при

заблокированной

функции

ДЗ

по

факту

срабатывания

функции

 FUSE 

автома

тически

вводится

резервная

МТЗ

выполненная

при

помощи

функции

максимальной

токовой

за

щиты

 (

рис

. 1).

Направленность

ТЗНП

реализована

по

сдви

гу

вектора

тока

нулевой

последовательности

3Io 

относительно

виртуального

вектора

 IN>DIR, 

строящегося

программно

и

отстающего

от

векто

ра

напряжения

нулевой

последовательности

 -U4 

на

угол

 65° (

задаётся

уставкой

функции

ТЗНП

), 

подводимого

от

цепей

напряжения

разомкнуто

го

треугольника

ТН

 («

Н

», «

К

»). 

Если

проекция

Рис

. 1. 

Резервная

МТЗ

для

терминала

 «REL-511»

FUSE-VTSZ — 

сигнал

неисправности

цепей

переменного

напряжения

 «

звезды

»

Работа терминалов «REL-511» и 

«REL-670» при неисправности 

цепей переменного напряжения

При возникновении неисправности во вторичных цепях переменного напря-
жения, используемых функциями направленной токовой защиты нулевой по-
следовательности (ТЗНП) и дистанционной защиты (ДЗ) в микропроцессорных 
терминалах серий «REL-511» и «REL-670» производства ООО «АББ Силовые Ав-
томатизированные Системы», возможен отказ этих защит, установленных в сети 
110, 220 кВ. С учётом того, что терминалы «АBB» имеют свободно программируе-
мую логику, возможно их переконфигурирование для сохранения работоспособ-
ности функций ТЗНП и ДЗ при неисправности цепей переменного напряжения. 
Ниже приведены технические решения, применяемые в ОАО «МРСК Урала».

Владислав НАУМОВ,

 главный специалист отдела РЗА и ПАА ДОТиСУ

 ОАО «МРСК Урала»

Page 3

background image

95

 2 (29), 

март

апрель

, 2015

95

Рис

. 2. 

Резервная

ТЗНП

для

терминала

 «REL-511»

EF4-STIN1 — EF4-STIN4 — 

пу

ски

 1—4 

ст

упени

ТЗНП

;

EF4-STWF — 

сигнал

пр

ямог

о

направ

ления

мощности

ну

лев

ой

после

дов

ат

ельности

;

EF4-STR

V — 

сигнал

обра

тног

о

направ

ления

мощности

ну

лев

ой

после

дов

ат

ельности

.

Page 4

background image

96

СЕТИ РОССИИ

3Io×cos(

φ

-65°) 

на

отрезок

 IN>DIR 

превышает

по

ве

личине

длину

этого

отрезка

то

в

зависимости

от

зна

ка

этой

проекции

определяется

прямое

или

обратное

направление

мощности

короткого

замыкания

с

током

нулевой

последовательности

.

Цепи

переменного

напряжения

разомкнутого

тре

угольника

не

контролируются

функцией

 FUSE. 

Таким

образом

при

возникновении

неисправности

цепей

напряжения

разомкнутого

треугольника

и

возникно

вении

короткого

замыкания

с

 3Io 

на

ЛЭП

направлен

ные

ступени

функции

ТЗНП

действовать

на

отклю

чение

не

могут

и

срабатывают

лишь

их

пуски

для

которых

срабатывание

органов

мощности

нулевой

последовательности

не

требуется

.

Для

отключения

КЗ

на

ЛЭП

при

которых

возни

кают

токи

нулевой

последовательности

при

наличии

неисправности

цепей

переменного

напряжения

ра

зомкнутого

треугольника

выполнена

схема

автома

тического

вывода

направленности

четырёхступен

чатой

ТЗНП

при

неисправности

цепей

переменного

напряжения

согласно

рис

. 2. 

Неисправность

цепей

напряжения

разомкнутого

треугольника

автоматиче

ски

выявляется

по

факту

пуска

ступени

  (

ступеней

ТЗНП

и

отсутствия

срабатывания

органов

мощности

нулевой

последовательности

прямого

и

обратного

направления

При

выполнении

схемы

  (

рис

. 2) 

и

настройке

со

ответствующих

ступеням

ТЗНП

уставок

по

време

ни

на

четырёх

элементах

выдержки

времени

в

ло

гике

защит

вышеуказанное

КЗ

будет

отключено

ненаправленным

пуском

соответствующей

ступе

ни

ТЗНП

с

выдержкой

времени

заданной

для

этой

ступени

.

В

терминалах

серии

 «REL-511» 

не

представля

ется

возможным

выполнить

полноценный

контроль

цепи

напряжения

разомкнутого

треугольника

Схема

позволяет

выявлять

неисправность

цепей

напряже

ния

  «

Н

», «

К

» 

только

в

случае

возникновения

КЗ

с

током

нулевой

последовательности

 3Io 

достаточной

величины

для

пуска

ступеней

ТЗНП

.

При

разработке

схемы

одной

из

задач

было

ми

нимизировать

использование

незадействованных

логических

элементов

 «

И

» («AND») 

за

счёт

исполь

зования

логических

элементов

отрицания

 («INV») 

и

суммирования

 («OR»), 

которые

применяются

реже

при

создании

конфигурации

и

имеются

в

достаточ

ном

количестве

При

создании

логики

конфигурации

согласно

рис

. 1 

и

 2 

необходимо

использовать

элементы

«AND» 

и

 «OR» 

с

временем

опроса

 6 

мс

для

быстро

действующих

ступеней

ТЗНП

с

автоматическим

выводом

направленности

при

неисправности

цепи

разомкнутого

треугольника

напряжения

и

для

функ

ции

автоматического

ввода

междуфазной

токовой

защиты

при

неисправности

цепи

переменного

на

пряжения

 «

звезды

».

Особое

внимание

необходимо

обратить

на

уставку

 IN>DIR (

по

умолчанию

задана

 30% Ib, 

пре

дел

 — 5—40% Ib) 

в

параметрах

ТЗНП

терминала

«REL-511», 

которая

должна

быть

меньше

чем

мини

мальная

уставка

по

току

ступени

ТЗНП

.

ТЕРМИНАЛЫ

СЕРИИ

 «REL-670»

В

отличие

от

 «REL-511», 

в

терминале

 «REL-670» 

для

пуска

прямо

направленных

ступеней

ТЗНП

не

обходимо

срабатывание

органа

мощности

нулевой

последовательности

в

прямом

направлении

Таким

образом

при

неисправности

цепей

переменного

напряжения

разомкнутого

треугольника

пуски

на

правленных

ступеней

штатной

функции

ТЗНП

не

возможны

В

таком

случае

согласно

схеме

на

рис

. 3, 

выполнен

автоматический

ввод

защиты

широкого

назначения

которая

использует

в

качестве

поляри

зующего

напряжения

сумму

векторов

фазных

напря

жений

Параметры

уставок

функции

широкого

назна

чения

задаются

в

соответствии

с

уставками

штатной

функции

ТЗНП

.

Сигналы

 TEF1-STFW 

и

 TEF1-STRV, 

использую

щиеся

для

определения

неисправности

цепей

на

пряжения

разомкнутого

треугольника

формируются

с

выходов

 STFW 

и

 STRV 

функции

ТЗНП

 (EF4PTOC) 

соответственно

При

исправном

состоянии

цепей

напряжения

ра

зомкнутого

треугольника

в

режиме

короткого

замы

кания

с

токами

нулевой

последовательности

пуски

и

действие

на

отключение

 1 

и

 2 

ст

резервной

ТЗНП

(

РТЗНП

заблокированы

и

срабатывает

штатная

функция

ТЗНП

Неисправность

цепей

напряжения

разомкнутого

треугольника

выявляется

автоматически

по

фак

ту

направленного

пуска

ступени

  (

ступеней

ТЗНП

функции

защиты

широкого

назначения

и

отсутствия

срабатывания

органов

мощности

нулевой

после

довательности

штатной

функции

ТЗНП

в

обоих

на

правлениях

.

Сигнал

неисправности

цепей

напряжения

разом

кнутого

треугольника

 (NCRT), 

действующий

на

све

тодиод

с

фиксацией

имеет

задержку

на

срабатыва

ние

в

 30 

мс

на

программном

элементе

времени

так

как

сигналы

прямой

или

обратной

направленности

органа

направления

мощности

нулевой

последова

тельности

формируются

с

некоторой

задержкой

по

сле

формирования

сигнала

пуска

ступени

ТЗНП

.

При

возникновении

неисправности

цепей

напря

жения

разомкнутого

треугольника

и

появлении

КЗ

с

током

 3Io 

в

прямом

направлении

 1 

и

 2 

ст

РТЗНП

будут

автоматически

разблокированы

и

по

достиже

нии

заданной

выдержки

времени

произойдёт

их

на

правленное

действие

на

отключение

выключателя

с

пуском

УРОВ

Направленность

РТЗНП

обеспечива

ется

программным

вычислением

функцией

защиты

широкого

назначения

напряжения

нулевой

последо

вательности

по

фазным

напряжениям

 «

звезды

».

Так

как

функция

защиты

широкого

назначения

имеет

только

две

ступени

токовой

защиты

по

пре

вышению

тока

то

их

уставки

соответствуют

устав

кам

первой

и

третьей

прямонаправленных

ступеней

штатной

функции

ТЗНП

.

Для

возможности

вычисления

терминалом

суммы

векторов

фазных

напряжений

в

конфигурации

логи

ки

создан

блок

предварительной

обработки

 SMAI5 

(

рис

. 3), 

к

которому

подключены

фазные

каналы

на

пряжения

 (CH7-CH9), 

без

подключения

канала

на

пряжения

разомкнутого

треугольника

 (CH10). 

Сигнал

Page 5

background image

97

 2 (29), 

март

апрель

, 2015

Рис

. 3. 

Резервная

ТЗНП

для

терминала

 «REL-670»

TEF1-STFW — 

сигнал

пр

ямог

о

направ

ления

мощности

ну

лев

ой

после

дов

ат

ельности

;

TEF1-STR

V — 

сигнал

обра

тног

о

направ

ления

мощности

ну

лев

ой

после

дов

ат

ельности

;

OTKL_TZNP1_NCR

T

 ——

в

логик

у

отк

лю

чения

с

пу

ск

ом

УР

ОВ

;

OTKL_TZNP2_NCR

T

 ——

к

св

ет

одио

ду

;

PUSK_TZNP1_NCR

T

 ——

в

логик

у

РА

С

;

PUSK_TZNP2_NCR

T

 ——

в

логик

у

РА

С

;

OTKL_TZNP1_NCR

T

 ——

в

логик

у

РА

С

;

OTKL_TZNP2_NCR

T

 ——

в

логик

у

РА

С

;

NCR

T

 ——

к

св

ет

одио

ду

с

фик

сацией

сраб

атыв

ания

.

Page 6

background image

98

СЕТИ РОССИИ

с

выхода

 «AI3P» 

блока

SMAI5 

подключён

к

вхо

ду

 «U3P» 

защиты

широ

кого

назначения

а

также

к

входу

блока

измерения

VMSQI. 

На

выходе

блока

VMSQI «3U0» 

в

режиме

реального

времени

будет

отображаться

величина

геометрической

суммы

фазных

напряжений

в

первичной

величине

.

Для

определения

величины

напряжения

разомк

нутого

треугольника

необходимо

создать

ещё

один

блок

предварительной

обработки

 SMAI6, 

к

трём

входам

которого

необходимо

подключить

один

и

тот

же

канал

напряжения

разомкнутого

треугольни

ка

 (CH10). 

В

режиме

реального

времени

на

выходе

блока

 VMSQI «3U0» 

будет

отображаться

утроенное

значение

напряжения

разомкнутого

треугольника

Это

значение

необходимо

разделить

на

три

Такое

построение

схемы

измерения

обусловлено

особен

ностью

работы

терминала

.

Функция

резервной

максимальной

токовой

защи

ты

  (

РМТЗ

выполнена

в

функциональном

блоке

за

щиты

широкого

назначения

 (CVGAPC). 

На

вход

бло

ка

 CVGAPC «I3P» 

подключён

выходной

трёхфазный

сигнал

тока

с

выхода

блока

предварительной

обра

ботки

данных

 SMAI (

рис

. 4). 

На

вход

блока

 CVGAPC 

«U3P» 

подключён

сигнал

 «GRP_OFF» 

от

блока

фик

сированных

сигналов

 FIXD SIGN.

При

исправном

состоянии

цепей

переменного

на

пряжения

  «

звезды

» 

функция

РМТЗ

заблокирована

так

как

активен

вход

 BLKOC1.

При

возник

новении

неис

правности

цепей

переменного

на

пряжения

  «

звез

ды

» 

вход

 BLKOC1 

становится

не

активным

и

с

момента

увели

чения

между

фазного

тока

до

уставки

срабатывания

начинает

ся

отсчёт

времени

внутреннего

таймера

функции

(0,5 

с

), 

задаваемого

уставкой

.

В

настоящее

время

в

ОАО

  «

МРСК

Урала

» 

в

34 

терминалах

защит

ЛЭП

 110, 220 

кВ

серии

«REL-511» 

внедрены

описанные

выше

техниче

ские

решения

обеспечивающие

работоспособность

терминалов

при

неисправности

вторичных

цепей

пе

ременного

напряжения

До

настоящего

момента

ус

ловий

для

срабатывания

внедрённых

схем

не

было

.

В

 2015 

году

в

ОАО

  «

МРСК

Урала

» 

планируется

продолжить

работы

по

внедрению

представленных

в

настоящей

статье

технических

решений

Рис

. 4. 

Резервная

МТЗ

для

терминала

 «REL-670»

Издательство

журнала

 «

ЭЛЕКТРОЭНЕРГИЯ

Передача

и

распределение

» 

выпустило

книгу

академика

РАЕН

профессора

Владимира

Абрамовича

Непомнящего

Тираж

книги

 5000 

экз

.,

объём

 196 

с

., 

формат

 170

х

235 

мм

.

Для

приобретения

издания

необходимо

позвонить

по

многоканальному

телефону

+7 (495) 645-12-41 

или

написать

по

 e-mail: [email protected]

При возникновении неисправности во вторичных цепях переменного напряжения, используемых функциями направленной токовой защиты нулевой последовательности (ТЗНП) и дистанционной защиты (ДЗ) в микропроцессорных терминалах серий «REL-511» и «REL-670» производства ООО «АББ Силовые Автоматизированные Системы», возможен отказ этих защит, установленных в сети 110, 220 кВ. С учётом того, что терминалы «АBB» имеют свободно программируемую логику, возможно их переконфигурирование для сохранения работоспособности функций ТЗНП и ДЗ при неисправности цепей переменного напряжения. Ниже приведены технические решения, применяемые в ОАО «МРСК Урала».


Релейная защита и автоматика

http://www.eprussia.ru/epr/22/1506.htm

Газета «Энергетика и промышленность России» | № 6 (22) июнь 2002 года

Новые решения «АББ Автоматизация» в области РЗА высокого напряжения

С момента создания компании «АББ Автоматизация» был взят курс на развитие в России собственного производства микропроцессорных устройств РЗА. Благодаря высокому научному потенциалу сотрудников предприятия постоянно ведется работа по расширению номенклатуры выпускаемых устройств — разрабатываются устройства, обладающие новыми свойствами, соответствующие требованиям, предъявляемым к современному оборудованию. В результате подготовлен к применению в энергосистемах целый ряд сертифицированных устройств нового поколения — интеллектуальных терминалов. В этих терминалах функции защиты, хотя и остаются базовыми, дополнены функциями измерения, регистрации, контроля за состоянием объекта, а также функциями управления и дистанционной связи.

На базе адаптированной для российских энергообъектов версии терминалов серии RE_ 500 «АББ Автоматизация» разработала и поставила в различные энергосистемы несколько десятков шкафов и панелей защит линий электропередачи 110 — 750кВ. В большинстве случаев это шкафы резервных защит с терминалами дистанционной защиты (ДЗ) типов REL 511R, REL521. В ряде проектов применены терминалы защиты REB 010, REB 103, REB 551. Имеется опыт применения терминалов продольной дифференциальной защиты линий типа REL 551 в качестве основной защиты, а также терминалов REC 561 для целей регистрации и управления. Общее количество терминалов серии RE_ 500, поставленных в энергосистемы, превышает 120 шт. Большая часть из них передана в эксплуатацию, и уже получены положительные результаты их функционирования в условиях анормальных режимов. В целом ряде проектов терминалы интегрированы в системы управления (SCS) и мониторинга (SMS)станции или подстанции.

Отдел НИОКР «АББ Автоматизация» в тесном содружестве с РАО «ЕЭС России» при участии ведущих проектных институтов, монтажных и наладочных организаций, КРУ — строительных заводов и служб РЗА энергосистем постоянно работает над созданием, совершенствованием и внедрением современных микропроцессорных устройств, алгоритмов и систем РЗА

Большой опыт и знание требований российских энергообъектов позволили создать и освоить производством типовые шкафы защиты и управления выключателем линий электропередачи напряжением 110 (220) кВ типа ШЭЛС, предназначенные для обеспечения функций защиты и управления линейными выключателями одной или двух линий, получившие высокую оценку МВК.

Шкафы выполнены с использованием микропроцессорных устройств защиты линии, автоматики и управления типа REL 511, изготовляемых «АББ Автоматизация».

В состав ШЭЛС входит в зависимости от функционального назначения один или два независимых микропроцессорных терминала защиты типа REL 511. Индикация, отражающая общую информацию о работе защит и исправности терминалов, переключатели для оперативного управления выключателем и переключатели ввода/вывода защит расположены на передней панели шкафа. Подробная информация о работе защит шкафа выводится на программируемый блок светодиодной сигнализации терминалов и дисплей интерфейса человек-машина.

Терминалы, выполняя функции основной защиты, одновременно реализуют функции резервных защит, а также осуществляют выбор поврежденных фаз для выполнения одно- и трехфазного автоматического повторного включения (АПВ). Как правило, в отечественной практике одна из основных защит выполняется с использованием блокирующих, а другая — разрешающих сигналов. Рассматриваемые терминалы также предусматривают возможность выполнения защит с разрешающими сигналами, что позволяет реализовать вторую основную защиту.

Значительно расширены возможности свободного конфигурирования схем защиты, что позволяет в большей степени удовлетворить пожелания пользователя, вытекающие из особенностей работы защищаемого объекта. Предусмотрены меры, гарантирующие правильное функционирование терминалов при перерывах питания различной длительности. Каждый терминал REL 511 дополняется испытательным блоком для выполнения проверки защит.

Установка двух многофункциональных терминалов позволяет создать комплекс, обеспечивающий полноценную защиту линий, дублированную как в части основных, так и в части резервных защит, и осуществляющий при этом ряд дополнительных функций, в том числе возможность интеграции его в АСУ ТП. В настоящее время аналогичные комплексы уже используются в ряде отечественных энергосистем.

Кабельная арматура,
ЕЭС
,
Напряжение
,
Подстанции,
Светодиоды
,

Новые решения «АББ Автоматизация» в области РЗА высокого напряжения Код PHP» data-description=»» data-url=»https://www.eprussia.ru/epr/22/1506.htm»» data-image=»https://www.eprussia.ru/upload/share.jpg» >

Похожие
Свежие
Популярные

Понравилась статья? Поделить с друзьями:
  • Руководство для чери тиго
  • Робот пылесос neatsvor s600 инструкция на русском
  • Tohatsu 6 4 х тактный инструкция
  • Фуциталмик инструкция по применению глазные капли инструкция
  • Ибуклин юниор инструкция по применению для детей таблетки 3 года