Renishaw руководство по программированию

Руководство по программированию: Программное обеспечение для бесконтактных систем наладки инструмента (pdf)

Размер файла: 2,35 Мб
Язык: Русский
Дополнительная информация: H-2000-6661

Требуется выполнить вход в систему

Если вы уже зарегистрированы в системе MyRenishaw, т.е. у вас есть MyRenishaw-аккаунт, то выполните вход в систему. Пользователи, зарегистрированные в системе MyRenishaw, имеют доступ к контролируемым документам и страницам сайта, а также могут выполнять быструю загрузку информации. Выполните регистрацию, если вы хотите пользоваться этими возможностями.

Последние видео — Датчики и программное обеспечение для станков

Ещё новые видео

Renishaw NC1 Programming Manual

  • Contents

  • Table of Contents

  • Bookmarks

Quick Links

H-2000-6199-02-A

1

2

R25=y

R26=z

R11=h

R25=y

=>?@D

NC1 non-contact

tool setting system

Programming Guide

(Siemens 810D / 840D and FMNC)

loading

Related Manuals for Renishaw NC1

Summary of Contents for Renishaw NC1

  • Page 1
    H-2000-6199-02-A R25=y R26=z R11=h R25=y =>?@D NC1 non-contact tool setting system Programming Guide (Siemens 810D / 840D and FMNC)
  • Page 2
    However, Renishaw makes no warranties with respect to the contents of this document and specifically disclaims any implied warranties. Renishaw reserves the right to make changes to this document and to the product described herein without obligation to notify any person of such changes.
  • Page 3
    NC1 non-contact tool setting system Programming Guide (Siemens 810D / 840D and FMNC controls) =>?@D www.renishaw.com Renishaw plc New Mills, Wotton-under-Edge, Gloucestershire, GL12 8JR, UK Tel: +44 (0)1453 524524 [07000 RENISHAW] Fax: +44 (0)1453 524901 email: uk@renishaw.com…
  • Page 4
    Renishaw has no control over the exact program configuration of the controller with which the software is to be used, nor of the…
  • Page 5
    When using the Beam alignment cycle (subroutine L9860) you will also need to refer to the following Renishaw publication. This contains instructions on how to physically align the beam at the NC1 transmitter unit. NC1 Installation Guide and Parts List…
  • Page 6: Table Of Contents

    Contents Contents Renishaw NC1 tool setting system …………. 6 Features of the NC1 system software ……….7 Measuring subroutine features ………… 7 Calibration subroutine features ………… 7 Service subroutine features …………8 Software memory requirements …………9 Machine tool controllers supported ………… 9 Tool-offset types supported …………..

  • Page 7: Table Of Contents

    Contents Tool radius/diameter setting (subroutine L9862) ……43 Tool length and radius setting (subroutine L9862) ……49 Cutting edge checking (subroutine L9862) ……..55 Broken tool detection – plunge checking (subroutine L9863) ..60 Broken tool detection – radial checking (subroutine L9864) …. 65 Cutter radius and linear profile checking (subroutine L9865) ..

  • Page 8: Renishaw Nc1 Tool Setting System

    Renishaw NC1 system Renishaw NC1 tool setting system This guide describes how to use the Renishaw NC1 non-contact tool setting system software. The Renishaw NC1 is a laser-based non-contact tool setting system that provides high-speed/high-precision measurement of cutting tools on a machining centre under normal operating conditions.

  • Page 9: Features Of The Nc1 System Software

    Software features Features of the NC1 system software NC1 system software provides the following measuring and calibration features: Measuring subroutine features Four measuring subroutines provide the following features: L9862 – used for measuring the length and diameter of the cutting tool and for cutting edge checking.

  • Page 10: Service Subroutine Features

    Software features Service subroutine features The measuring and calibration subroutines are supported by the service subroutines listed below. L9760 – used for the settings data. L9761 – used for startup functions. L9762 – used for the measuring routine. L9763 – used for the G31 routine. L9764 –…

  • Page 11: Software Memory Requirements

    You may also remove the following subroutine after you have finished running the Beam alignment cycle: L9860 (laser beam alignment routine) 1.5 Kb (3.8 metres) of memory Machine tool controllers supported NC1 system software is suitable for use on the following machine tool controllers: Siemens 810D Siemens 840D Siemens FMNC…

  • Page 12: Tool-Offset Types Supported

    Tool-offset types supported Tool-offset types supported Positive tool-offset applications The NC1 software is ideally suited to setting tools using positive tool- offset values that represent the physical length of the tool. Throughout this programming guide, descriptions refer to positive tool-offset applications.

  • Page 13: Relative To A Master Tool With Zero (0) Tool-Offset Value

    Tool-offset types supported RENC[10] = –800.0 Maximum length tool RENC[11]= –950.0 Minimum length tool Relative to a master tool with zero (0) tool- offset value. The master tool-offset register is set to zero (0) and all other tool- offset registers are set as ± values relative to the master tool. Example Home position, to the zero (0) position of the part program = –1000 mm (but this is not important)

  • Page 14: Installing The Software

    Installing the software Installing the software Before installing the NC1 software, read the guidelines contained in the Readme file on the software floppy disk. Subroutine parameters The following parameters are used by the NC1 system software: ‘RENT’ global parameters – used for the calibration data and settings data.

  • Page 15: Setting-Data Subroutine L9760

    Parameter store for calibration data RENT[24] Position along the beam at which measurements are made. RENT[26] Spindle (length-measuring) axis temperature compensation zero offset. RENT[27] Radial-measuring axis temperature compensation zero offset. Setting-data subroutine L9760 Read the following parameter descriptions then edit subroutine L9760 as described.

  • Page 16
    The value is specified when the NC1 system is ordered. Check the status LED sequence on power up (for details, see “NC1 Installation Guide and Parts List ”). RENC[17] Default overtravel distance and radial clearance. Overtravel is the distance through the beam that the tool is permitted to move before a BEAM NOT CUT alarm is initiated.
  • Page 17
    Setting-data subroutine the beam when moving down the side of the beam. Default: 5 mm (0.197 in) RENC[18] Default measurement resolution (feedrate-per-rev.). Typically 0.001 mm (0.0001 in) feed per revolution. The larger the value, the less accurate measurements will be. Default: 0.002 mm (0.0001 in) RENC[19] Default spindle speed.
  • Page 18
    Setting-data subroutine If the Z-axis is to be used for radial measurement, select 3. Default: 2 RENC[23] Axis used for length measurement, i.e. the spindle axis. If the X-axis is to be used for length measurement, select 1. If the Y-axis is to be used for length measurement, select 2.
  • Page 19
    Setting-data subroutine For a description of this feature, see the figure in “Scatter tolerance checking” on page 23. Default: 3 RENC[27] Rapid traverse feedrate. Default: 5000 mm/min RENC[28] Select language. 1 = English, 2 = German, 3 = French, 4 = Italian RENT[5] Number of the digital input for monitoring the probe status signal.
  • Page 20
    RENC[10]=200.; MAX TOOL LENGTH (8.0 in) RENC[11]=70.; MIN TOOL LENGTH (2.75 in) RENC[12]=80.; MAX CUTTER DIAMETER (3.15 in) RENC[13]=2; TL SET RADIUS MEAS DIR RENC[14]=2; CALIB RADIUS MEAS DIR RENC[15]=.10; NC1-DELAY IN SECS RENC[17]=5.; DEFAULT OVERTRAVEL (0.197 in) RENC[18]=.002; MEASURE RESOLUTION (0.0001 in)
  • Page 21: Common Parameters

    Setting-data subroutine RENC[19]=3150; DEFAULT RPM RENC[21]=1; BEAM AXIS RENC[22]=2; RADIAL MEASURE AXIS RENC[23]=3; SPINDLE AXIS RENC[24]=.01; SCATTER TOL (0.0004 in) RENC[25]=.025; RUN OUT/CUTTING-EDGE TOL (0.001 in) RENC[26]=1; SAMPLE SCATTER SIZE RENC[27]=5000; RAPID TRAVERSE RENC[28]=1; LANGUAGE 1=GB 2=D 3=FR 4=IT RENT[5]=0;DIGITAL INPUT NO RENT[7]=1;MEASURE INPUT RENT[9]=0;MAGAZINE NUMBER FOR TL MANAGEMENT RENT[28]= ;DISABLE LATCH…

  • Page 22: Customising The Subroutines

    In addition to the subroutine customising information described below, further customising and installation information is included in the Readme file supplied with the NC1 software. Editing the measure move subroutine L9762 The back-off move distance can be adjusted for optimisation of the cycles.

  • Page 23: Orientation Of The Nc1 System

    Orientation of the NC1 system Orientation of the NC1 system Throughout this guide it has been assumed that the NC1 system is installed with the laser beam parallel to the X-axis. Length measurements are made from the Z-axis and radial measurements are made from the Y-axis.

  • Page 24: Beam-Find And Measuring Moves

    Beam-find and measuring moves Beam-find and measuring moves Beam-find moves and measuring moves are all made with the tool moving into the laser beam, as shown in the figure. Measuring moves are made with the tool rotating. Measure Fast Reduced feed feed feed…

  • Page 25: Scatter Tolerance Checking

    Scatter tolerance checking Scatter tolerance checking In the following example: The default sample size setting value RENC[26] = 3 is used. The number of retries is automatically set to twice the sample size. In this example, six (6). Sample measurements are taken until either the maximum retries limit is reached, causing an alarm, or a sample of measurements is found to be within limits.

  • Page 26: Beam Alignment (Subroutine L9860)

    Setting the measuring point along the beam axis at which the tool is measured. The provisional values are updated later when the calibration cycle is run. Although the Beam alignment subroutine is used mainly during installation of the NC1 system, it can also be used for routine…

  • Page 27
    R7=d alignment checking. NOTE: When using the Beam alignment subroutine you will also need to refer to the following Renishaw publication for instructions on how to physically align the beam at the transmitter unit: NC1 Installation Guide and Parts List (Renishaw Part No.
  • Page 28
    Beam alignment Description Load the calibration tool in the spindle of the machine. Using either the jog or handwheel mode, move the tool to the position that is to be used for tool setting – usually midway along the beam and approximately 10 mm (0.394 in) above the centre of the beam.
  • Page 29
    Beam alignment Examples R02=1. R07=100. R06=117. R26=15. L9860 R02=1. R07=100. R26=15. L9860 Subroutine inputs The following inputs are used with this subroutine: R02=1. Provisional calibration of the system. Used for checking alignment of the beam and setting the provisional beam positional data (for details, see “Parameter store for calibration data”…
  • Page 30
    When specifying the value of the R07=d input, take care that it will not allow any part of the tool holder to make contact with the NC1 tool setting system. The projection of the calibration tool should be at least 35 mm (1.38 in) if the default R26=z input is used for the incremental measuring depth.
  • Page 31
    Beam alignment R18=r r= Diameter of tool This controls the radial clearance move distance. This can be either a positive (+) or negative (–) value. Default value: 30 mm (1.18 in) R26=z z= Incremental measuring depth. This value determines the depth on the calibration tool at which calibration takes place.
  • Page 32
    Beam alignment RENC[3] Z-axis beam alignment error over the measured span. (This is empty if the Z-axis is the beam axis.) + error If the R02=1 input is used, the following outputs are also set: RENT[20] Provisional Z-axis position of the beam when measured from the positive side of the beam.
  • Page 33
    Beam alignment Example Beam alignment and setting the provisional beam position %_N_???? ;R02=1 Include approximate set cal. data ;R07=d Axial distance between measures ;R18=r Tool diameter ;R26=z Search distance G0 G53 X302. Y-236. M00 ; Handwheel to position L9800 NOTE: Do not use the R02=1. input if you R02=1.R07=100.
  • Page 34: Calibrating The Nc1 (Subroutine L9861)

    Calibrating the NC1 Calibrating the NC1 (subroutine L9861) Subroutine L9861 is used for regular calibration of the NC1 system. It should also be used after the laser beam has been aligned with the Beam alignment cycle. The Calibration cycle is used for the following…

  • Page 35
    Calibrating the NC1 R06=k R19=s R26=z R26=z R25=y R18=r R17=q Description Load the calibration tool in the spindle of the machine and make the tool number (T) active before running the cycle. The position of the beam in the Z-axis and the centre of the beam in either the X or Y-axis are calibrated while the tool is rotated.
  • Page 36
    Calibrating the NC1 Format R02=1. R18=r [R03=c R06=k R17=q R19=s R25=y R26=z] L9861 where [ ] denotes optional inputs Example R02=1. R06=100.210 R18=12. R03=4. R17=5. R19=2500. R25=5. R26=5. L9861 Subroutine inputs The following inputs are used with this subroutine: R02=1.
  • Page 37
    Calibrating the NC1 R18=r r= Reference diameter of the calibration tool. R19=s s= Spindle speed at which calibration takes place. For details, see “Setting-data subroutine L9760” on page Default value: 3150 rev/min R25=y y= Radial step-over for length calibration. The offset across the beam at which measurement takes place.
  • Page 38
    Calibrating the NC1 RENT[23] X or Y-axis position of the beam, when measured from the negative side of the beam. RENT[24] Position at which the beam is measured. RENT[26] Spindle (length-measuring) axis temperature compensation zero offset. RENT[27] Radial-measuring axis temperature compensation zero offset.
  • Page 39
    Calibrating the NC1 L9800 R02=1.R06=88.R18=6. L9861 IMPORTANT: If you need to track the axis growth caused by temperature variation during the machining operation, use the R03=c input to store the relevant zero offset registers as reference values. Example: R02=1. R06=88. R18=6. R03=1.
  • Page 40: Tool Length Setting (Subroutine L9862)

    Tool length setting Tool length setting (subroutine L9862) Subroutine L9862 is used to measure the effective length of a cutting tool. The Tool length measurement cycle is suitable for on-centre setting of tools such as drills and ball-end mills, and for off-centre setting of tools such as face mills and end mills.

  • Page 41
    Tool length setting The effective tool length is written to the current tool register and nominated edge number (D). By default, the current tool number and edge will be set. Format [R02=1. R11=h R05=j R13=m R14=t R17=q R19=s R25=y] L9862 where [ ] denotes optional inputs Example R02=1.
  • Page 42
    Tool length setting the tool length is found to be out of tolerance. Default value: No tolerance check. R13=1. Tool out of tolerance flag. Using this flag prevents a tool OUT OF TOLERANCE alarm from being raised. R14=t t= Tool offset edge to be updated (usually up to nine edges).
  • Page 43
    Tool length setting Outputs The following outputs are set or updated when this cycle is executed: Set tool length RENC[48] Out of tolerance flag. This is set when the measured tool length is out of tolerance, provided the R11=h input is used.
  • Page 44
    Tool length setting L9862 A different tool edge offset can be set by using the R14=t input on the call line as follows: Set tool offset edge D2 on centre. R02=1.R14=2.R19=4000. Controlled rev/min. L9862 Tool length setting – off-centre tool Assume the tool is 80mm (3.15in) diameter.
  • Page 45: Tool Radius/Diameter Setting (Subroutine L9862)

    Tool radius/diameter setting Tool radius/diameter setting (subroutine L9862) Subroutine L9862 is used for measuring the effective radius/diameter of a tool. The Tool radius measure cycle allows the radius/diameter to be measured from the positive side of the beam, from the negative side of the beam, or from both sides of the beam.

  • Page 46
    Tool radius/diameter setting made on either one or both sides of the beam (see setting RENC[13] in “Setting-data subroutine L9760” on page 13). The effective radius/diameter is written into the tool offset register. The wear register is zeroed and the radius/diameter value is placed in the geometry register.
  • Page 47
    Tool radius/diameter setting radius, based on previous experience of how the effective diameter/radius differs from the measured diameter/radius when the tool is under load. Default value: Not used. NOTE: For cutter centre-line programming applications, entering the nominal size as an experience value will result in the error being stored instead of the full radius/diameter of the cutter.
  • Page 48
    Tool radius/diameter setting R17=q q= Overtravel distance and radial clearance. For details, see “Setting-data subroutine L9760” on page 13. Default value: 5.0 mm (0.197 in) R18=r r= Diameter of tool. This is the nominal diameter of the tool. Default value: Maximum diameter of tool in RENC[12].
  • Page 49
    Tool radius/diameter setting Outputs The following outputs are set or updated when this cycle is executed: Set tool radius/diameter RENC[48] Out of tolerance flag. This is set when the measured tool length is out of tolerance, provided the R11=h input is used.
  • Page 50
    Tool radius/diameter setting R03=2.R14=2. Inputs to set tool radius edge D2. L9862 Tool radius setting 2 Assume the tool is an 80 mm (3.15 in) diameter cutter. %_N_???? L9800 R03=2.R19=800.R18=80. Inputs to set current tool radius edge (default). Controlled rev/min and radial clearance.
  • Page 51: Tool Length And Radius Setting (Subroutine L9862)

    Tool length and radius setting Tool length and radius setting (subroutine L9862) Subroutine L9862 is used for measuring the effective length and radius/diameter of a tool. The Tool length and radius measure cycle is particularly suitable for tools such as face mills, end mills, slot cutters, disc mill cutters, dovetail cutters and boring tools.

  • Page 52
    Tool length and radius setting Description This single cycle combines the Tool length measuring cycle (see “Tool length setting” on page 38) and Tool radius/diameter measuring cycle (see “Tool radius/diameter setting” on page 43). The figure shows the combined cycle moves. Radial measurement (3) can be made on either one or both sides of the beam (see setting RENC[13] in “Setting-data subroutine L9760”…
  • Page 53
    Tool length and radius setting process. It is used to define the measured diameter/ radius, based on previous experience of how the effective diameter/radius differs from the measured diameter/radius when the tool is under load. Default value: Not used. NOTE: For cutter centre-line programming applications, entering the nominal size as an experience value will result in the error being stored instead of the full radius/diameter of the cutter.
  • Page 54
    Tool length and radius setting R14=t t= Tool offset edge to be updated (usually up to nine edges). R14=3 Updates the current tool offset, edge D3. If R14 is not input, the current tool offset edge (D) is updated. The current tool is the number of the tool in the spindle.
  • Page 55
    Tool length and radius setting R25=y y= Radial step-over for length setting. This is the offset across the beam at which length measurement takes place. The value must be less than the radius of the tool. The tool always comes down first on the beam centre-line.
  • Page 56
    Tool length and radius setting For an explanation of the meaning of alarms, see “Error messages and alarms” on page 85. Examples Tool length/radius setting 1 Assume the tool is a 10 mm (0.394 in) diameter slot drill. %_N_???? L9800 R03=3.R14=2.
  • Page 57: Cutting Edge Checking (Subroutine L9862)

    Cutting edge checking (subroutine L9862) NOTE: This cycle can be used only if the latch mode feature of the NC1 system is installed and operational. Subroutine L9862 is used for checking the cutting edges of a tool. The diameter Cutting edge check cycle checks for either missing or damaged teeth or for excessive runout of the cutter.

  • Page 58
    R06=k input. The spindle speed is calculated from the minimum pulse signal delay RENC[15] of the NC1 system and the number of teeth on the cutting tool. This ensures that when each tooth enters the beam, a permanent beam cut signal is held unless a tooth is either missing or is out of tolerance.
  • Page 59
    Cutting edge checking R03=c c= The number of teeth on the tool. This automatically selects the cutting edge check. Default value: No default. R06=k k= The tolerance value that defines when the tool cutting edge runout is excessive. Default value: 0.025 mm (0.0098 in) R09=f f= Feedrate-per-rev.
  • Page 60
    Cutting edge checking signal delay of the control and the number of teeth on the tool. Default value: 3150 rev/min. R24=x x= Cylinder profile checking distance, i.e. the spindle axis movement, while edge checking. The value is incremental from the R26=z input radial measuring position.
  • Page 61
    Cutting edge checking FORMAT ERROR OUT OF TOLERANCE RPM OUT OF RANGE RUN-OUT/EDGE MISSING For an explanation of the meaning of alarms, see “Error messages and alarms” on page 85. Examples Cutting edge checking Assume a 2-flute slot drill and check for a broken edge 0.5 mm from the end face of the cutter.
  • Page 62: Broken Tool Detection – Plunge Checking (Subroutine L9863)

    Broken tool detection (plunge check) Broken tool detection – plunge checking (subroutine L9863) Subroutine L9863 is used to check for breakage of cutting tools. The Broken tool cycle uses a plunge check, where the tool is moved into and out of the laser beam in the axis used for length setting. The cycle can also check for a ‘long tool’…

  • Page 63
    Broken tool detection (plunge check) Description Detection of a broken tool occurs while the tool is rotated in the beam. Moves into and out of the beam are at the rapid feedrate. The tool first moves over the beam, in the X and Y axes, to the measuring position and then moves, in Z, to the tool checking position.
  • Page 64
    Broken tool detection (plunge check) R13=1. Tool broken flag. Using this flag prevents a BROKEN TOOL or OUT OF TOLERANCE alarm from being raised. R19=s s= Spindle speed at which checking for a broken tool takes place. For details, see “Setting-data subroutine L9760” on page 13.
  • Page 65
    Broken tool detection (plunge check) Alarms The following alarms may be generated when this cycle is executed. BROKEN TOOL FORMAT ERROR RPM OUT OF RANGE For an explanation of the meaning of alarms, see “Error messages and alarms” on page 85. Example Broken tool detection –…
  • Page 66
    Broken tool detection (plunge check) If the broken tool flag method is used, the call cycle is modified as follows: L9800 Make a broken tool check without raising an R26=100.R13=1. alarm. The RENC[48] flag is set. L9863 Go to LN100 IF RENC[48]==1 GOTOF LN100 (continue program) Block LN100 will contain corrective actions.
  • Page 67: Broken Tool Detection – Radial Checking (Subroutine L9864)

    Broken tool detection (radial check) Broken tool detection – radial checking (subroutine L9864) Subroutine L9864 is used to check for breakage of cutting tools. The Broken tool cycle uses a radial check, where the tool is moved through the laser beam in the direction used for radius/diameter setting.

  • Page 68
    At the end of the cycle, the tool moves out of the beam to the safe position in the spindle axis only. CAUTION 1. The latch mode feature of the NC1 system must be installed and operational if the R25=y input is to be used when passing the tool through the beam.
  • Page 69
    Broken tool detection (radial check) Subroutine inputs The following inputs may be required for this subroutine: R11=h h= Tolerance value that defines when the tool is defined as broken. Default value: 0.5 mm (0.0197 in). R13=1. Tool broken flag. Using this flag prevents a BROKEN TOOL alarm from being raised.
  • Page 70
    Broken tool detection (radial check) Alarms The following alarm may be generated when this cycle is executed. BROKEN TOOL For an explanation of the meaning of alarms, see “Error messages and alarms” on page 85. Example Broken tool detection – radial check %_N_???? G0Z200.
  • Page 71
    Broken tool detection (radial check) Select the next tool and continue. (continue machining) If the broken tool flag method is used, the call cycle is modified as shown: L9800 Make a broken tool check R25=50.R26=100.R13=1. without raising an alarm. L9864 The RENC[48] flag is set.
  • Page 72: Cutter Radius And Linear Profile Checking (Subroutine L9865)

    (subroutine L9865) NOTE: This cycle can be used only if the latch mode feature of the NC1 system is installed and operational. This cycle is used to check the profile of ballnose cutters, cutters with corner radii, and cutters with linear profiles. The profile is checked to find out if it is within a specified form tolerance.

  • Page 73
    Cutter radius and linear profile checking With R18=r input –Tol. +Tol. R06=k Checking a profile R18=r with corner radius R24=x R11=h R05=j No R18=r input R17=q –Tol. R25=y +Tol. R17=q R06=k Checking a R24=x linear profile R11=h R25=y Format For radius profile checking R18=r R24=x [R02=b R03=c R09=f R11=h R05=j R06=k R13=m R14=t R17=q R19=s R25=y R26=z] L9865…
  • Page 74
    Cutter radius and linear profile checking Example R18=10. R24=5. R02=3. R03=4. R09=0.3 R11=1. R05=1. R06=1. R13=1 R14=2. R17=90. R19=4000. R25=5. R26=50. L9865 For linear profile checking R24=x [R02=b R03=c R09=f R11=h R06=k R13=m R14=t R17=q R19=s R25=y R26=z] L9865 where [ ] denotes optional inputs Example R24=5.
  • Page 75
    Cutter radius and linear profile checking TIP: To prevent retracting at the end of the cycle, use an R26=0 input. R03=c c= When this input is used, enter the number of cutting edges on the tool. The spindle speed is then automatically adjusted to enable errors on each cutting edge to be checked.
  • Page 76
    Cutter radius and linear profile checking R13=1. Used to prevent an alarm being raised when the profile is out of limits. R14=t t= Tool length offset edge. This is the offset location in which the measured tool length is stored. Default value: Current tool edge.
  • Page 77
    Cutter radius and linear profile checking R17=q q= Included angle of the cutter radius. Range: 0° 90° ³ £ R18=r r= The cutter radius value. R24=x x= Linear distance moved tangentially past the cutter radius profile (see the figures on page 71). Range: ³…
  • Page 78
    Cutter radius and linear profile checking Outputs NOTE: When the R02=3. or R02=6. input is used and the tool is found to be out of tolerance during the negative (–) tolerance profile check, the cycle is automatically aborted and does not complete the positive (+) tolerance profile check.
  • Page 79
    Cutter radius and linear profile checking Examples Profile checking a Ø20 mm (0.787 in) ballnose cutter Check the profile is within ±0.05 mm (0.002 in) The profile checking starts at 1 mm (0.040 in) radial from the cutter centre and then moves around the 90° radius, and then a further 15 mm (0.591 in) up the diameter of the tool %_N_???? L9800…
  • Page 80
    Cutter radius and linear profile checking Profile checking a Ø20 mm (0.787 in) tapered cutter with 10° side taper Check the profile is within ±0.05 mm (0.002 in). The profile check starts at 1 mm (0.040 in) high and 10.176 mm (0.401 in) radial, and then moves along the taper for 30 mm (1.181 in).
  • Page 81: Temperature Compensation Tracking (Subroutine L9861)

    Temperature compensation tracking Temperature compensation tracking (subroutine L9861) Subroutine L9861 can be used to calibrate the NC1 system for variations in the spindle axis and/or the radial-measuring axis caused by temperature changes in the machine tool. Run this cycle on a regular basis during machining operations to compensate for growth in the spindle axis and/or radial-measuring axis.

  • Page 82
    Refer to the figure showing cycle moves. The subroutine is used as described previously in “Calibrating the NC1 (subroutine L9861)” on page 32, but instead of resetting the calibration data, the beam positions are compared with the original calibration values. The deviation for each axis is then used to adjust the relevant zero offset.
  • Page 83
    Temperature compensation tracking For spindle axis temperature compensation R02=4. R03=c R06=k [R17=q R19=s R25=y] L9861 where [ ] denotes optional inputs Example R02=4. R03=3. R06=88. R17=5. R19=2500 R25=5. L9861 For radial measuring axis temperature compensation R02=5. R03=c R18=r [R17=q R19=s] L9861 where [ ] denotes optional inputs Example…
  • Page 84
    This must be the same as that used with the R02 input for calibration Refer to the R03=c input description in “Calibrating the NC1” (page 32) for controller/offset options. R06=k k= Reference length of the calibration tool. R11=h h= Tolerance for the maximum variation of temperature changes.
  • Page 85
    Temperature compensation tracking Outputs The following outputs are set or updated when this cycle is executed: RENC[12] Temperature compensation error for length measurement. RENC[13] Temperature compensation error for radial measurement. The zero offset axis values are corrected. Alarms The following alarms may be generated when this cycle is executed. ACTIVE BEAM CUT BEAM NOT CUT FORMAT ERROR…
  • Page 86
    Temperature compensation tracking Example To track the growth in the spindle axis and radial-measuring axis. The external zero offset is used to store the compensations. %_N_???? L9800 R02=6.R03=4.R06=88.R18=6. L9861 Alternatively, if individual axis tracking is required, use either the R02=4. or R02=5. input.
  • Page 87: Error Messages And Alarms

    Error messages and alarms Error messages and alarms Error messages are displayed by the error subroutine L9769. When an error state is detected, an error message is displayed on the screen of the controller. Error messages, their meaning, and typical actions needed to clear them are described below.

  • Page 88
    Error messages and alarms by coolant and swarf on the tool. Also check for mechanical movement of the tool/tip insert or NC1 system. This is a reset condition. Message FALSE TRIGGER Meaning The beam has been cut several times during a measurement move.
  • Page 89
    Error messages and alarms Message FORMAT ERROR Meaning A subroutine input is either missing or the value entered is incorrect. Action Correct the subroutine input line then run again. This is a reset condition. Message ACTIVE BEAM CUT Meaning The receiver is registering a cut beam signal at the start of a measuring move.
  • Page 90
    Error messages and alarms Message TOOL OUT OF RANGE Meaning Either the size of the cutting tool exceeds the size that is set in parameters RENC[10] to RENC[12] inclusive, or the tool offset number is wrong. Action Edit the program. Check the cutter size. Message RUN-OUT/EDGE MISSING Meaning…
  • Page 91
    Renishaw plc, New Mills, Wotton-under-Edge, Gloucestershire GL12 8JR, UK +44 (0)1453 524524 [07000 RENISHAW] +44 (0)1453 524901 Telex 437120 RENMET G email uk@renishaw.com Renishaw Inc, USA Renishaw (Hong Kong) Ltd., Hong Kong, +1 847 286 9953 The People’s Republic of China…

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

  1. Manuals
  2. Brands
  3. Renishaw Manuals

ManualsLib has more than 491 Renishaw manuals

Accessories

Models

Document Type

A-1332-0002

User Manual

A-1332-0003

User Manual

A-1332-0004

User Manual

A-1332-0005

User Manual

A-1332-0006

User Manual

A-1332-0007

User Manual

A-1332-0008

User Manual

A-1332-0009

User Manual

A-1332-0010

User Manual

A-1332-0011

User Manual

Show all Renishaw Accessories manuals

Amplifier

Models

Document Type

A-5518-0025

Installation Manual

A-5518-2500

Installation Manual

A-5518-2550

Installation Manual

A-5629-0100

Installation Manual

A-5629-0200

Installation Manual

A-5629-0300

Installation Manual

apply innovation SPA2

Installation Manual

H-1000-5068-02-A SPA1 s

Installation Manual

SPA1

Installation Manual
  •   Installation Manual
  •   Installation Manual

Show all Renishaw Amplifier manuals

Analytical Instruments

Models

Document Type

OLP40

Installation Manual
  •   Quick Start Manual
  •   Quick Start Manual
  •   Installation Manual

OMP40-2

Quick Start Manual
  •   Quick Start Manual
  •   Installation Manual
  •   Installation Manual
  •   Quick Start Manual
  •   Manual

PH20

Installation And User Manual
  •   User Manual
  •   Operation And Maintenance

Control Unit

Models

Document Type

A-2028-7574

Installation Manual

HSI

Quick Start Manual
  •   Installation Manual

IMP

Manual

MCR20

User Instruction

OMM

Repair Instructions
  •   Manual

SLM 250

Installation And Operation Manual

Controller

Models

Document Type

MCU1

User Manual

MCU5

User Manual

MCUlite-2

User Manual

PHC10-3 PLUS

Installation And User Manual
  •   Installation Manual
  •   Installation And User Manual
  •   Installation Manual

UCC dynamic mapping tool

User Manual

UCC MMI

Installation Manual

UCC MMI-2

Installation Manual

UCC PI 80

Installation Manual

UCC S3

Installation Manual

Show all Renishaw Controller manuals

DC Drives

Models

Document Type

Equator 500

Installation Manual
  •   Installation Manual

Diagnostic Equipment

Models

Document Type

A-5504-0040

Installation Manual

A-5504-0050

Installation Manual

A-6078-0070

Installation Manual

A-6078-0085

Installation Manual

ADTa-100

User Manual

ADTi-100

User Manual
  •   User Manual

Equator

Installation Manual

Equator 300

Product Information
  •   Installation Manual

Equator 300 Extended Height

Installation Manual

Equator 500

Installation Manual
  •   Installation Manual

Show all Renishaw Diagnostic Equipment manuals

Industrial Electrical

Models

Document Type

OMI-2

Installation Manuals
  •   User Manual
  •   Installation And User Manual
  •   Quick Start Manual

RGA22

User Manual

Industrial Equipment

Models

Document Type

Equator A-5924-0350

Assembly Instructions Manual

Equator ATS 40-800

Installation And User Manual

Equator EQ-ATS

Installation Manual

HPGA

Installation And User Manual

HSI-C

Installation Manual
  •   Quick Start Manual

InfiniAM Spectral

User Manual

Kiosk workstation

User Manual

LP2

Installation And User Manual
  •   Installation And User Manual
  •   Installation Manual

LP2DD

Installation And User Manual
  •   Installation Manual

LP2H

Installation And User Manual
  •   Installation Manual

Show all Renishaw Industrial Equipment manuals

Laboratory Equipment

Models

Document Type

H-1000-5071-09-A

Installation Manual

PH10

Installation Manual

PH10M

Installation Manual

PH10MQ

Installation Manual

PH10T

Installation Manual

PHC10-2

Installation Manual

Laser Shaft Alignment Tools

Models

Document Type

XK10

User Manual
  •   Manual

Measuring Instruments

Models

Document Type

A-1073-0121

User Manual

A-1073-0261

User Manual

A-2085-0068

Installation Manual

A-4071-0060

Installation Manual

A-5000-3709

Installation Manual

A-5471-2011

Installation Manual

A-5472-0060

Installation Manual

A-5472-2001

Installation Manual

A-5472-3000

Installation Manual

A-5472-3003

Installation Manual

Show all Renishaw Measuring Instruments manuals

Media Converter

Models

Document Type

ATOM

Installation Manual
  •   Installation Manual
  •   Installation Manual
  •   Installation Manual

ATOM DX

Installation Manual
  •   Installation Manual

ATOM DX Series

Installation Manual

ATOM Series

Installation Manual

EVOLUT RTLA50

Installation Manual

EVOLUTE FASTRACK

Installation Manual

Show all Renishaw Media Converter manuals

Microphone system

Models

Document Type

MP18

Installation And User Manual

Other

Models

Document Type

ADTi-100

User Manual
  •   User Manual

Power Supply

Models

Document Type

PSU3

Installation And User Manual

RCU10

Installation And User Manual

Power Tool

Models

Document Type

Primo LTS

User Manual

Power Tool Accessories

Models

Document Type

APCA-45

Installation And User Manual

MP11

Installation Manual

RTS

Quick Start Manual
  •   Quick Start Manual
  •   Installation Manual

TS27R

Installation And User Manual
  •   Installation Manual

Racks & Stands

Models

Document Type

ACR3

Installation And User Manual

MRS2

Installation Manual

Receiver

Models

Document Type

OMI-2T

Quick Start Manual

OMM

Repair Instructions
  •   Manual

OMM-S SPRINT

Installation Manual
  •   Quick Start Manual

OMME

Repair Instructions

OSI-S SPRINT

Installation Manual
  •   Quick Start Manual

Recording Equipment

Models

Document Type

A-5923-0050

User Manual

A-5923-0259

User Manual

A-9926-0700

User Manual

EQUATOR EQ-IQ

User Manual

H-2000-5015-05-N

Installation And User Manual

HSI

Quick Start Manual
  •   Installation Manual

HSI-C

Installation Manual
  •   Quick Start Manual

MI 12

Installation And User Manual

MI5

Installation And User Manual

NCi-6

Installation And User Manual
  •   Installation Manual

Show all Renishaw Recording Equipment manuals

Sander

Models

Document Type

LTO2

Installation And User Manual

Scanner

Models

Document Type

Quarryman Pro

Hardware Manual

RETROSCAN

Installation Manual

Security Sensors

Models

Document Type

TRS1

Programming Manual
  •   Installation And User Manual

TRS2

Installation Manual

Test Equipment

Models

Document Type

A-5003-2280

User Instructions

MIP

User Manual

Show all Renishaw Test Equipment manuals

Tools

Models

Document Type

A-5514-8500

Quick Start Manual

NC4

Cleaning Instructions Manual
  •   Manual
  •   Installation Manual
  •   Installation And Maintenance Manual

NC4+ Blue

Installation Manual
  •   Quick Start Manual

NC4+ Blue F115C

Manual

NC4+ Blue F115C-R

Manual

NC4+ Blue F145C

Manual

NC4+ Blue F145C-R

Manual

NC4+ Blue F230C

Manual

NC4+ Blue F230C-R

Manual

Show all Renishaw Tools manuals

Ultrasonic Jewelry Cleaner

Models

Document Type

Equator cleaning kit

User Manual

Valve Positioners

Models

Document Type

ACR2

Installation Manual

гарантируете, что во время обучения не произойдёт поломки датчика, а в случае поломки берёте на себя покупку нового? Сколько времени займёт обучение? после обучения дадите какой-либо сертификат, подтверждающий, что обучаемый освоил программу и выполнит контрольные задания (или обучение происходит в частном порядке за определённую сумму денег вруки)? стоимость?

Датчик MP700 (3-х мерный с ИК связью с приёмником), ЧПУ Sinumerik 840D.

гарантируете, что во время обучения не произойдёт поломки датчика, а в случае поломки берёте на себя покупку нового Могу, но это отразаится на стоимости обучения.

после обучения дадите какой-либо сертификат, подтверждающий, что обучаемый освоил программу и выполнит контрольные задания. К сожалению, такого сертификата и сам не имею. Можем совместно составить задание, дать его обучаемому и посмотреть, как он его выполнит.

или обучение происходит в частном порядке за определённую сумму денег вруки да в частном, можно по договору, деньги можно в руки, можно на расчетный счет.

Сумма зависит, от того, что Вы хотите получить в результате, насколько подготовлен обучаемый. Если интересует более конкретно давайте связываться через ICQ, email (см мой профиль)

Понравилась статья? Поделить с друзьями:
  • Норокарп для собак инструкция по применению цена
  • Инструкция по эксплуатации инкубатор золушка бытовой на 70 яиц
  • Руководство жизни без конфликтов
  • Функции руководства картинки
  • Кас 16 кожный антисептик инструкция по применению