Руководство по загрузке системы

Параметры загрузки Windows позволяют запускать систему в специальных режимах устранения неполадок, чтобы найти и решить проблемы с компьютером.

Открытие окна «Параметры загрузки Windows» в разделе «Параметры компьютера»

  1. Проведите пальцем от правого края экрана и нажмите кнопку Параметры, а затем выберите пункт Изменение параметров компьютера.
    (Если вы используете мышь, наведите указатель мыши на правый нижний угол экрана, щелкните значок, а затем выберите пункт Параметры, а затем — изменить параметры ПК.)

  2. В разделе Параметры компьютера выберите элемент Обновление и восстановление, а затем — Восстановление.

  3. В разделе Дополнительные параметры запусканажмите кнопку Перезапустить сейчас.

  4. После перезагрузки компьютера в окне Выбор действия выберите элемент Диагностика. Если пункт Параметры загрузки не отображается, выберите Дополнительные параметры.

  5. Нажмите кнопку Параметры запуска и перезагрузите компьютер.

  6. На экране Параметры загрузки выберите необходимый параметр.

  7. Войдите в систему, используя учетную запись пользователя с правами администратора.

Открытие окна «Параметры загрузки Windows» в среде восстановления Windows

Если не удается загрузить компьютер, выполните следующие инструкции, чтобы запустить среду восстановления Windows. Для выполнения этих действий понадобится подключить клавиатуру.

  1. Выполните одно из следующих действий в зависимости от того, какой установочный носитель используется (например, DVD-диск или USB-устройство флэш-памяти).

    • Если у вас есть установочный носитель для Windows 8.1, запустите компьютер с установочного носителя. Вставьте DVD-диск или USB-устройство флэш-памяти и перезагрузите компьютер. Если отображается сообщение «Нажмите любую клавишу, чтобы выполнить загрузку с DVD-диска», нажмите любую клавишу. Если такое сообщение не отображается, то, возможно, нужно изменить порядок загрузки в параметрах BIOS вашего компьютера, чтобы сначала он загружался с DVD-диска или USB-устройства. Когда появится страница Установка Windows, выберите вариант Восстановление системы, чтобы запустить среду восстановления Windows.

    • Если у вас нет установочного носителя, три раза подряд перезагрузите компьютер с помощью кнопки питания. В результате запустится среда восстановления Windows.

  2. В среде восстановления Windows на экране Выбор действия выберите элемент Диагностика.

  3. Нажмите кнопку Параметры загрузки. Если кнопка Параметры загрузки не отображается, выберите элемент Дополнительные параметры, а затем нажмите кнопку Параметры загрузки.

  4. Нажмите кнопку Перезагрузка и подождите, пока компьютер перезагрузится.

  5. Выберите действие на экране Параметры загрузки.

  6. Войдите в систему, используя учетную запись пользователя с правами администратора.

Некоторые варианты, такие как безопасный режим, позволяют запустить Windows с ограниченными возможностями, когда работают только основные программы. При других вариантах Windows запускается с дополнительными параметрами (обычно их используют системные администраторы и ИТ-специалисты). Дополнительные сведения можно найти на веб-сайте Microsoft TechNet для специалистов по ИТ.

Примечание: Если вы используете BitLocker, вам потребуется приостановить его, прежде чем перейти к параметрам загрузки Windows. В Windows RT 8.1 может появиться запрос на ввод ключа восстановления шифрования устройства, чтобы перейти к параметрам загрузки.

 Запускает Windows в расширенном режиме устранения неполадок, предназначенном для ИТ-специалистов и системных администраторов.

Создает файл ntbtlog.txt, в который заносятся все драйверы, установленные во время запуска. Эта информация может оказаться полезной для расширенной диагностики.

Запуск Windows с использованием текущего видеодрайвера и низкими значениями разрешения и частоты обновления изображения. Этот режим можно использовать для сброса параметров дисплея.

Безопасный режим запускает Windows с минимальным набором драйверов и служб, которые помогут устранить проблемы. Если при запуске в безопасном режиме проблема не проявляется, то параметры по умолчанию, основные драйверы устройств и службы можно исключить из возможных причин ее возникновения. Существуют три разных варианта безопасного режима.

  • Включить безопасный режим. Запуск Windows с минимальным набором драйверов и служб.

  • Включить безопасный режим с загрузкой сетевых драйверов. Запуск Windows в безопасном режиме, а также загрузка сетевых драйверов и служб, необходимых для доступа к Интернету или другим компьютерам в локальной сети.

  • Включить безопасный режим с поддержкой командной строки. Запуск Windows в безопасном режиме с окном командной строки вместо обычного интерфейса Windows. Этот вариант предназначен для ИТ-специалистов и системных администраторов.

Если при перезагрузке компьютера в безопасном режиме проблема не возникает, то основные параметры, файлы и драйверы Windows не связаны с ее появлением. Попробуйте по очереди запустить все приложения, которые вы обычно используете (включая приложения в папке автозагрузки). Возможно, неполадку вызывает определенное приложение. Если одно из приложений вызывает проблему, удалите его или обратитесь к издателю программного обеспечения. Если неполадки возникают в безопасном режиме или по-прежнему не удается найти проблему, вы можете попробовать обновить или сбросить компьютер. Подробнее: Обновление, возврат в исходное состояние или восстановление компьютера.        

Позволяет устанавливать драйверы, содержащие неправильные подписи.

Предотвращает запуск антивредоносного драйвера с ранним запуском, позволяя драйверам, которые могут содержать вредоносные программы, устанавливаться.

Запрет автоматического перезапуска Windows в случае сбоя в работе системы. Выбирайте этот параметр только в том случае, если Windows придерживается в цикле, если Windows не работает, пытается выполнить повторный запуск и повторное выполнение ошибки.

Запуск контроллера домена Windows, на котором выполняется Active Directory, для восстановления службы каталогов. Этот вариант предназначен для ИТ-специалистов и системных администраторов.

Нужна дополнительная помощь?

Нужны дополнительные параметры?

Изучите преимущества подписки, просмотрите учебные курсы, узнайте, как защитить свое устройство и т. д.

В сообществах можно задавать вопросы и отвечать на них, отправлять отзывы и консультироваться с экспертами разных профилей.

Найдите решения распространенных проблем или получите помощь от агента поддержки.

Это статья для повышения компьютерного кругозора. Если сегодня хочется попрограммировать, сделайте проект с колесом фортуны, а если нужны задачи — вот подборка самых интересных задач на логику.

Сегодня покажем, что происходит в обычном стационарном компьютере, когда вы его включаете и загружаете. Прямо по шагам, углубляясь в детали. 

Воткнули вилку в розетку

Чаще всего компьютер включён в сеть постоянно, и это значит, что блок питания подаёт на материнскую плату совсем небольшой ток. Ток настолько мал, что внутри блока питания ничего не греется, поэтому не нужно включать никакие вентиляторы. 

Ток поступает на контакты питания материнской платы, а оттуда — на системный контроллер. Системный контроллер — специальная микросхема (или группа микросхем), которая управляет всем, что находится на материнской плате, включая процессор и оперативную память. Когда есть питание, системный контроллер просто ждёт, пока пользователь не нажмёт кнопку включения компьютера.

Получается, даже когда компьютер условно выключен, на самом деле он включён — работает системный контроллер, который, как сторож, проверяет, нужно ли подавать электричество на остальные устройства внутри компьютера. 

Нажали кнопку включения

После нажатия кнопки включения системный контроллер получает от неё сигнал и говорит блоку питания: «Мне нужно больше тока». Блок начинает полноценно работать и подаёт полноценное питание на материнскую плату и остальные компоненты — теперь начинают работать все основные компоненты компьютера:

  • процессор,
  • оперативная память,
  • микросхемы BIOS или UEFI (про них позже),
  • жёсткий диск.

Когда всё это заработало, системный контроллер берёт содержимое микросхемы BIOS, загружает его в оперативную память и говорит «Ну всё, дальше ты». С этого момента управление компьютером переходит к BIOS.

Загрузился BIOS

BIOS — это аббревиатура от Basic Input/Output System, базовая система ввода-вывода. Она отвечает за первоначальную загрузку компьютера. Все данные BIOS хранятся в отдельной микросхеме на материнской плате, а чтобы настройки не пропали после отключения от розетки, ставят батарейку. Если питания от сети не будет, батарейка будет поддерживать память в микросхеме около 10 лет.

Как происходит загрузка компьютера

Микросхема BIOS рядом с батарейкой

Первое, что делает BIOS, — запускает POST (Power On Self Test), самотестирование при включении. Тест проверяет работу процессора, оперативной памяти, контроллеров, загрузчиков и всего остального оборудования, важного для загрузки компьютера. Если всё в порядке, то компьютер пропищит один раз и продолжит загрузку — так он сообщает о результатах тестирования. А если будут ошибки — пропищит иначе, например:

  • короткий и длинный — ошибка с оперативной памятью;
  • длинный и 2 коротких — проблемы с видеокартой;
  • постоянно длинный и короткий гудки — что-то с процессором;
  • всё время пищит — ошибки с блоком питания.

Когда POST пройден, BIOS начинает искать загрузчик операционной системы. Для этого он смотрит у себя в настройках порядок загрузки — список дисков по очереди, с которых можно загрузиться. Например, вот порядок загрузки на экране BIOS компьютера Lenovo. Видно, что сначала нужно попробовать загрузиться с USB (первые три строчки), потом, если USB-дисков нет, — с жёсткого диска (п. 4), а если и диска нет — то попробовать с CD-дисковода или загрузиться по сети:

Как происходит загрузка компьютера

Порядок загрузки на экране BIOS компьютера Lenovo. Если нигде загрузчика не будет, BIOS остановится и выдаст ошибку

Как только загрузчик найден, BIOS считывает его код и передаёт ему всё дальнейшее управление компьютером.

Немного про UEFI

У BIOS есть проблема — устаревший интерфейс и мало возможностей для настроек компьютера. Чтобы это исправить, придумали UEFI — мини-операционную систему, которая так же, как и BIOS, может управлять основными настройками, но ещё обладает дополнительными возможностями. Например, у неё есть полноценный графический интерфейс с мышкой, расширенные возможности по настройке устройств и более полный доступ к возможностям железа. 

Основное отличие от BIOS в том, что UEFI требуется больше памяти для первоначальных программ загрузки компьютера. Для этого UEFI забирает себе первые 100 мегабайт на диске и берёт эти данные оттуда, а сам раздел делает скрытым. 

Как происходит загрузка компьютера

Работа загрузчика

Загрузчик — это сборное название всех программ и драйверов, которые понадобятся операционной системе для полноценной загрузки. 

Можно провести такую аналогию: операционная система — это строительная бригада, которая может сделать что угодно. Но для её работы нужен менеджер, чтобы он заранее съездил к заказчику, выяснил, что нужно сделать, составил смету, закупил материалы и прикинул график работ. Загрузчик — это как раз тот самый менеджер, который делает все предварительные работы. Если менеджер не сделает свою часть, бригада не сможет приступить к работам.

Сам загрузчик находится на жёстком диске, и как только BIOS его находит и отправляет в оперативную память, загрузчик начинает действовать:

  • включает нужный режим работы процессора, который защищает одни процессы от других;
  • распределяет оперативную память и сгружает туда файл с параметрами загрузки операционной системы;
  • загружает драйверы устройств и проверяет их цифровую подпись;
  • подключает файловую систему, чтобы компьютер мог полноценно работать со всеми дисками.

На финальном этапе загрузчик находит ядро операционной системы, загружает его в память и передаёт управление ему.

Запуск ядра операционной системы

Если процесс загрузки дошёл до этой точки, то компьютер понимает, что скоро загрузится операционная система, а значит, можно показать пользователю стартовый экран. На Windows он выглядит так:

Как происходит загрузка компьютера

Пока крутится индикатор загрузки, ядро занимается тем, что загружает и запускает все служебные программы и скрипты:

  • смотрит, какое подключено железо и какие драйверы для него нужны прямо сейчас;
  • считывает настройки системы и запускает скрипты сразу с нужными параметрами;
  • запускает службы и демоны;
  • настраивает графический интерфейс;
  • включает систему входа пользователей в систему.

Смысл ядра — запустить все программы, которые будут нужны для дальнейшей работы операционной системы. В нашей аналогии со строительной бригадой, ядро — это прораб, который находится всё время на объекте от начала работ до их полного окончания. Прораб следит за ключевыми процессами и вмешивается, если что-то идёт не так. Ядро действует точно так же: обеспечивает работоспособность всей ОС и регулирует ключевые процессы.

Вход пользователя в систему

Последний шаг загрузки компьютера — вход пользователя в систему. Он может быть автоматическим, если нет пароля на вход — в противном случае система попросит его ввести:

Как происходит загрузка компьютера

После входа операционная система загружает все пользовательские настройки и программы — ставит нужный фон на рабочий стол, применяет какую-то схему оформления и запускает те программы, которые выбрал этот пользователь.

И всё.

Вёрстка:

Кирилл Климентьев

Мы продолжаем разбираться как работает ПК на примере клавиатуры и Windows 10. В этой статье поговорим о том как происходит единение софта и железа.

Старт системы

Полностью компьютер выключен когда он отключен от питания и конденсаторы на материнской плате разрядились. До эры смартфонов мобильные телефоны часто глючили и если перезагрузка не лечила проблему, то приходилось доставать батарею и ждать 10 секунд, потому что сбрасывалось программное состояние ОС, в то время как чипы на материнской плате и контроллеры устройств оставались активными сохраняя состояние, драйвера ОС к ним просто реконнектились. 10 секунд — время на разрядку конденсаторов, состояние чипов сбрасывается только при полном отключении.
Если же ПК подключен к розетке или батарее, то он находится в режиме Stand-By, это значит что по шине питания подаётся маленькое напряжения (5В) от которого запитываются некоторые чипы на материнке. Как минимум это системный контроллер, по сути это мини-компьютер запускающий большой компьютер. Получив уведомление о нажатии кнопки Power он просит блок питания/батарею подать больше напряжения и после инициализирует весь чип-сет, в том числе и процессор. Инициализация включает в себя перекачку кода и данных прошивки материнки (BIOS/UEFI) в оперативную память и настройку CPU на её исполнение.
Думать что кнопка Power это рубильник который подаёт электричество на CPU и тот начинает исполнять с заранее известного адреса прошивку BIOS неправильно. Возможно старые компьютеры так и работали. Кнопка включения находится на своей плате, вместе со светодиодами состояний и к материнке она подключается через специальный разъём. На картинке ниже видны контакты для кнопки Power, Reset, а также светодиодов с состоянием Power и чтения жёсткого диска. Нажатие кнопки включения переводится в сигнал на контакты материнки, откуда он достигает системный контроллер.

Контакты на материнке для подключения кнопки включения, светодиодов состояния Power, жёсткого диска и динамиков.

Плата ноутбука с кнопкой включения и светодиодом состояния

Cистемный контроллер обладает огромными полномочиями – включать и выключать компьютер, исполнять код в режиме ядра. Помимо него могут быть и другие чипы со сравнимыми возможностями, такие как Intel Management Engine или AMD Secure Technology (часть CPU), которые так же работают когда компьютер «выключен». Чип с Intel ME имеет в себе x86 CPU с операционной системой MINIX 3. Что он может делать:

  1. Включать и выключать компьютер, т.е. выполнять программы имея доступ ко всей вычислительной мощности, периферии машины и сети.
  2. Обходить ограничения файервола.
  3. Видеть все данные в CPU и RAM, что даёт доступ к запароленным файлам.
  4. Красть ключи шифрования и получать доступ к паролям
  5. Логировать нажатия клавиш и движения мыши
  6. Видеть что отображается на экране
  7. Вредоносный код в Intel ME не может быть детектирован антивирусом, потому как на такой низкий уровень он добраться не может
  8. И конечно же скрытно отправлять данные по сети используя свой стек для работы с сетью.

Это вызывает серьёзные вопросы безопасности, потому как он может быть хакнут или использовать в шпионских целях.

Прикладная иллюстрация как блок питания получает сигнал от материнки на включение. Если вы задумаете установить мощную видеокарту (Nvidia 2070 S) на офисный ПК, то просто вставить её недостаточно, потому как она требует питание в 600W, в то время как такой ПК имеет блок на ~500W. Первое что придёт в голову – купить новый блок питания на 650W с отдельной линией для видеокарты. Но и здесь будут разочарования, потому как разъёмы материнки будут не совпадать с разъёмами БП, а если его отдельно воткнуть в розетку и подключить к видюхе тоже ничего не будет – в блоке питания вентилятор не крутится и изображения нет. Так происходит, потому что БП должен получить сигнал от материнки на полное включение. Очевидное решение – новая материнка с совместимыми разъёмами, однако она стоит ~$300. Есть решение проще, хоть оно и вызывает опасения пожаробезопасности. Берём скрепку, разгибаем и вставляем в зелёный (PS_ON) и один из чёрных пинов (COM). Теперь всё должно работать.

Поиск загрузчика ОС

Есть два вида прошивки материнки – BIOS (Basic Input Output System) на старых машинах и UEFI (Unified Extensible Firmware Interface) на новых. Windows 10 поддерживает обе и абстрагирует различия между ними. UEFI правильней называть ОС чем прошивкой, потому как он предлагает больше возможностей, к примеру богатый графический интерфейс вместо текстового, наличие мышки, больший объём доступной памяти, улучшенная модель безопасности и валидации файлов ОС, взаимодействие с железом через API, вместо прерываний как в BIOS.

Пример экрана монитора BIOS.

Программа BIOS хранится на отдельном чипе, подключенном к Южному мосту. Этот чип можно достать и перепрошить новой программой, по факту это просто носитель памяти, а не самостоятельный микрокомпьютер.

Настройки BIOS (системное время, например), хранятся на другом чипе который как правило находится возле круглой батарейки, которая на самом деле является литиевым аккумулятором, подзаряжающимся во время работы ПК. Называется он CMOS, что означает Complementary Metal Oxide Semiconductor, а по-русски просто — КМОП, что есть комплементарная структура металл-оксид-полупроводник.

Первым делом программа BIOS выполняет проверку подсистем, эта процедура называется POST – Power On Self Test. Тест может быть сокращённый либо полный, это задаётся в настройках BIOS. Процитирую Википедию, что в себя включают эти тесты:
Сокращённый тест включает:

  1. Проверку целостности программ BIOS в ПЗУ, используя контрольную сумму.
  2. Обнаружение и инициализацию основных контроллеров, системных шин и подключённых устройств (графического адаптера, контроллеров дисководов и т. п.), а также выполнение программ, входящих в BIOS устройств и обеспечивающих их самоинициализацию.
  3. Определение размера оперативной памяти и тестирования первого сегмента (64 килобайт).

Полный регламент работы POST:

  1. Проверка всех регистров процессора;
  2. Проверка контрольной суммы ПЗУ;
  3. Проверка системного таймера и порта звуковой сигнализации (для IBM PC — ИМС i8253 или аналог);
  4. Тест контроллера прямого доступа к памяти;
  5. Тест регенератора оперативной памяти;
  6. Тест нижней области ОЗУ для проецирования резидентных программ в BIOS;
  7. Загрузка резидентных программ;
  8. Тест стандартного графического адаптера (VGA или PCI-E);
  9. Тест оперативной памяти;
  10. Тест основных устройств ввода (НЕ манипуляторов);
  11. Тест CMOS
  12. Тест основных портов LPT/COM;
  13. Тест накопителей на гибких магнитных дисках (НГМД);
  14. Тест накопителей на жёстких магнитных дисках (НЖМД);
  15. Самодиагностика функциональных подсистем BIOS;
  16. Передача управления загрузчику.

По результатам этого теста может быть обнаружена неисправность, к примеру нерабочая видеокарта или клавиатура. Поскольку экран монитора может не работать результаты тестов сообщаются в виде последовательности звуковых сигналов разной высоты. Что конкретно они значат надо смотреть в документации к материнской плате. Старые компьютеры часто бибикали во время старта — это программа BIOS сообщала о результатах тестов. Иногда может дополнительно использоваться индикатор, показывающий номер ошибки.

Если всё прошло успешно, BIOS начинает процесс поиска загрузчика ОС. Для этого он начинает просматривать все подключенные к материнской плате жёсткие диски. Данные на физических дисках адресуются в единицах называемых сектор, обычно он 512 байт, однако современный стандарт – 4096 байт. Установщик Windows в самый первый сектор на диске записывает специальный программный код и данные о разделах. Этот сектор называется Master Boot Record. Диск разбивается на разделы (partitions), отформатированный своей файловой системой. Максимум 4 раздела, каждый из который может быть расширенным (extended partition), такой можно рекурсивно делить на 4 раздела и теоретически их число не ограничено. Как только BIOS находит Master Boot Record он считывает оттуда код и передаёт ему управление. Этот код поочередно просматривает данные о разделах и находит тот который помечен как активный, в нём находится код загрузчика Windows (Это не раздел с C:WindowsSystem32!), этот раздел называется system partition. Как правило он занимает 100Мб и скрыт от пользователя. В первом секторе этого раздела хранится загрузочный код, которому передаётся управление. Это volume boot sector, код в нём ищет файл Bootmgr, с которого и начинается процесс загрузки Windows. Файл Bootmgr создан через соединение в один файлов Startup.com и Bootmgr.exe.

Процессор начинает свою работу в режиме который называется «Реальный». Это режим совместимости, в нём CPU работает так же как и старые 16-bit процессоры, не имевшие поддержки виртуальной памяти и работавшие напрямую с физической памятью через 20-bit шину адресов, позволявшую адресовать 1Мб памяти. Простые MS-DOS программы выполнялись в этом режиме и имели расширение .COM. Первое что делает Startup.com (Bootmgr) – переключает процессор в режим «Защищённый», где под защитой понимается защита процессов друг от друга. В этом режиме поддерживается виртуальная память и 32х битные адреса, которыми можно адресовать 4Гб оперативной памяти. Следующим этапом Bootmgr заполняет таблицу виртуальных адресов на первые 16Мб RAM и включает трансляцию с виртуальных адресов в физические. В этом режиме и работает Windows. Поскольку на этом этапе подсистемы ОС ещё не созданы, Bootmgr имеет свою простую и неполную реализацию файловой системы NTFS, благодаря которой он находит BCD файл (Boot Configuration Data), в котором хранятся настройки параметров загрузки ОС. Вы можете редактировать его через утилиту BcdEdit.exe. В этих настройках BCD может быть указано, что Windows была в состоянии гибернации, и тогда Bootmgr запустит программу WinResume.exe, которая считывает состояние из файла Hyberfil.sys в память и перезапускает драйвера. Если BCD говорит, что есть несколько ОС, то Bootmgr выведет на экран их список и попросит пользователя выбрать. Если ОС одна, то Bootmgr запускает WinLoad.exe, этот процесс и выполняет основную работу по инициализации Windows:

  1. Выбирает соотвествующую версию ядра Windows. Можете думать о нём как о Windows10.exe, хотя на самом деле он называется NtOsKrnl.exe. Какие есть версии? Согласно википедии:
    • ntoskrnl.exe — однопроцессорное ядро Windows. без поддержки режима PAE
    • ntkrnlmp.exe (англ. NT Kernel, Multi-Processor version) — многопроцессорное ядро Windows. без поддержки режима PAE
    • ntkrnlpa.exe — однопроцессорное ядро Windows с поддержкой режима PAE.
    • ntkrpamp.exe — многопроцессорное ядро Windows с поддержкой режима PAE.

  2. Загружает HAL.dll (Hardware Abstraction Layer), который абстрагирует особенности материнки и CPU.
  3. Загружает файл шрифтов vgaoem.fon
  4. Загружает файлы в которых содержится инфомрация о представлениях даты времени, форматов чисел и пр. Эта функциональность называется National Language System.
  5. Загружает в память реестр SYSTEM, в нём содержится информация о драйверах которые надо загрузить. Информация о всех драйверах находится в HKLMSYSTEMCurrentControlSetServices. Драйвера которые надо загрузить имеют ключ start = SERVICE_BOOT_START (0). Об устройстве реестра мы поговорим в другой статье.
  6. Загружает драйвер файловой системы для раздела на котором располагаются файлы драйверов.
  7. Загружает драйвера в память, но пока не инициализирует их из-за круговых зависимостей.
  8. Подготавливает регистры CPU для выполнения ядра Windows выбранного на первом шаге – NtOsKrnl.exe.

Во время загрузки драйверов WinLoad проверяет их цифровые подписи и если они не совпадают, то будет синий (BSOD) или зелёный (GSOD, для insider preview сборок) «экран смерти».

Запуск на UEFI

Пример экрана загрузки UEFI

BIOS существует больше 30 лет и в попытках исправить его недостатки компания Intel в 1998 году создала стандарт Intel Boot Initiative, позже переименованный в EFI и в 2005 году пожертвованный организации EFI Forum. Недостатки BIOS:
• Работает только в 16-битном режиме
• Может адресовать только 1Mb оперативной памяти
• Часто имеет проблемы совместимости
• MBR ограничен только четырьмя главными разделами диска
• Диск с ОС не может быть больше чем 2.2Tb.
• Имеет очень ограниченные возможности для валидации загрузчика ОС.
На смену BIOS пришёл UEFI, по сути это миниатюрная ОС которая может работать и в 32-bit и в 64-bit. Для совместимости есть опция Compatibility Support Module, которая включается в настройках и эмулирует работу BIOS.

В UEFI загрузка происходит в родной для процессора битности – 32 или 64, есть доступ ко всей памяти, поддерживается виртуальная память, включен Secure Boot и есть возможность запустить antimalware до начала загрузки ОС. Порядок загрузки ОС в UEFI:

  1. Инициализация и запуск Firmware, запуск чип-сета.
  2. POST тест, аналогично BIOS
  3. Загрузка EFI-драйверов и поиск диска подпадающего под требования EFI для загрузочного диска
  4. Поиск папки с именем EFI. Спецификация UEFI требует чтобы был раздел для EFI System Partition, отформатированный под файловую систему FAT, размером 100Мб – 1Гб или не более 1% от размера диска. Каждая установленная Windows имеет свою директорию на этом разделе – EFIMicrosoft.
  5. Читает из настроек UEFI сохранённых в NVRAM (энергонезависимая память) путь к файлу загрузчика.
  6. Находит и запускает EFI/Microsoft/Boot/BootMgrFw.efi.
  7. BootMgrFw.efi находит раздел реестра BCD, который хранится в отдельном файле с именем BCD. Из него он находит WinLoad.efi, который расположен в C:WindowsSystem32winload.efi.

Чтобы посмотреть содержимое раздела EFI System Partition откройте консоль с правами админа (WinKey+X => Windows PowerShell (Admin)) и выполните команды mountvol Z: /s, Z:, dir. CD — меняет директорию.
Главное отличие компонентов BootMgr и WinLoad для UEFI от своих копий для BIOS тем что они используют EFI API, вместо прерываний BIOS и форматы загрузочных разделов MBR BIOS и EFI System Partition сильно отличаются.

Инициализация ядра

Напоминаю, что мы рассматриваем загрузку ПК в контексте работы клавиатуры, поэтому не стоит заострять внимание на всех этапах. Надо понять где в этом процессе находится клавиатура, важные для понимания этапы выделены.
На предыдущем этапе был запущен компонент WinLoad.exe/WinLoad.efi, который запускает NtOsKrnl.exe указав ему параметры загрузки в глобальной переменной nt!KeLoaderBlock (память режима ядра доступна всем процессам), которые WinLoad собрал во время своей работы. Они включают:

  1. Пути к System (загрузчик Windows) и Boot (C:WindowsSystem32) директориям.
  2. Указатель на таблицы виртуальной памяти которые создал WinLoad
  3. Дерево с описанием подключенного hardware, оно используется для создания HKLMHARDWARE ветки реестра.
  4. Копия загруженного реестра HKLMSystem
  5. Указатель на список загруженных (но не инициализированных) драйверов участвующих в старте Windows.
  6. Прочая информация необходимая для загрузки.

Инициализация ядра Windows происходит в два этапа. До этого происходит инициализация Hardware Abstraction Layer, который в числе всего прочего настраивает контроллеры прерывания для каждого CPU.
На этой же стадии загружаются в память строки с сообщениями для BSOD, потому как в момент падения они могут быть недоступны или повреждены.

  • Первая фаза инициализации ядра:
    1. Слой Executive инициализирует свои объекты состояний – глобальные объекты, списки, блокировки. Производится проверка Windows SKU (Stock Keeping Unit), примеры Windows 10 SKU — Home, Pro, Mobile, Enterprise, Education.
    2. Если включен Driver Verifier, то он инициализируется.
    3. Менеджер памяти создаёт структуры данных, необходимые для работы внутренних API для работы с памятью (memory services), резервирует память для внутреннего пользования ядром.
    4. Если подключен отладчик ядра (kernel debugger) ему отправляется уведомление загрузить символы для драйверов загружаемых во время старта системы.
    5. Инициализируется информация о версии билда Windows.
    6. Старт Object Manager – позволяет регистрировать именованные объекты к которым могут получать доступ по имени другие компоненты. Яркий пример – мьютекс по которому приложение позволяет запустить единственный экземпляр. Здесь же создаётся храниться handle table, по которой устанавливается соответствие к примеру между HWND и объектом описывающим окно.
    7. Старт Security Reference Monitor подготавливает всё необходимое для создания первого аккаунта.
    8. Process Manager подготавливает все списки и глобальные объекты для создания процессов и потоков. Создаются процесс Idle и System (в нём исполняется “Windows10.exe” он же NtOsKrnl.exe), они пока не исполняются, потому как прерывания выключены.
    9. Инициализация User-Mode Debugging Framework.
    10. Первая фаза инициализации Plug and Play Manager. PnP – это стандарт который реализовывается на уровне производителей периферии, материнских плат и ОС. Он позволяет получать расширенную информацию о подключенных устройствах и подключать их без перезагрузки ПК.

  • Вторая фаза инициализации ядра. Она содержит 51 шаг, поэтому я пропущу многие из них:
    1. По завершению первой фазы главный поток процесса System (NtOsKrnl.exe) уже начал исполнение. В нём производится вторая фаза инициализации. Поток получает самый высокий приоритет – 31.
    2. HAL настраивает таблицу прерываний и включает прерывания.
    3. Показывается Windows Startup Screen, которая по умолчанию представляет из себя чёрный экран с progress bar.
    4. Executive слой инициализирует инфраструктуру для таких объектов синхронизации как Semaphore, Mutex, Event, Timer.
    5. Объекты для User-Mode Debugger проинициализированы.
    6. Создана symbolic link SystemRoot.
    7. NtDll.dll отображена в память. Она отображается во все процессы и содержит Windows APIs.
    8. Инициализирован драйвер файловой системы.
    9. Подсистема межпроцессного общения между компонентами Windows ALPC проинициализирована. Можете думать о ней как о named pipes или Windows Communication Foundation для межпроцессного общения.
    10. Начинается инициализация I/O Manager, который создаёт необходимые структуры данных для инициализации и хранения драйверов подключенной к компьютеру периферии. Этот процесс очень сложный.
      Здесь же инициализируются компоненты Windows Management Instrumentation и Event Tracing for Windows (на него полагается Windows Performance Analyzer). После этого шага все драйвера проинициализированы.
    11. Запускается процесс SMSS.exe (Session Manager Sub System). Он отвечает за создание режима пользователя, в котором будет создана визуальная часть Windows.

Запуск подсистем – SMSS, CSRSS, WinInit

SMSS.exe отличается от пользовательских процессов, это нативный процесс и это даёт ему дополнительные полномочия. SMSS.exe работает с ядром в обход Windows API, он использует то что называется Native API. Windows API – обёртка вокруг Native API. SMSS.exe первым делом запускает подсистему Windows (CSRSS.exe – Client Server Runtime Sub System) и заканчивает инициализацию реестра.

Процесс и потоки SMSS.exe помечены как критические, это значит что если они неожиданно завершаться, к примеру из-за ошибки, это приведёт к падению системы. Для общения с подсистемами, к примеру вызову API создающему новую сессию, SMSS создаёт ALPC-порт с именем SmApiPort. Загружаются из реестра переменные среды окружения, запускаются программы такие как Check Disk (autochk.exe, эти программы записаны в реестре HKLMSYSTEMCurrentControlSetControlSession ManagerBootExecute). SMSS.exe запускается для каждой пользовательской сессии. Глобальные переменные (очередь сообщений например) у каждой сессии своя за счёт механизма виртуальной памяти. В Windows есть контексты потока, процесса и сессии. Каждый SMSS.exe запускает свой экземпляр подсистемы, на данный момент это только CSRSS.exe (Windows), в прошлом поддерживались операционные системы OS/2 (os2ss.exe) и POSIX (psxss.exe), но эта идея была неудачной. Самый первый SMSS.exe засыпает в ожидании процесса WinInit.exe. Остальные экземпляры вместо этого создают процесс WinLogon который показывает UI для входа.

WinInit.exe инициализирует подсистемы для создания графической оболочки – Windows Station и десктопы, это не тот рабочий стол который вы видите, это иная концепция Windows. Далее он запускает процессы:

  1. Services.exe Services Control Manager (SCM) запускает сервисы и драйвера помеченные как AutoStart. Сервисы запускаются в процессах svchost.exe. Есть утилита tlist.exe, которая запущенная с параметром tlist.exe -s напечатает в консоли имена сервисов в каждом из svchost.exe.
  2. LSASS.exe – Local System Authority.
  3. LSM.exe – Local Session Manager.

WinLogon.exe – загружает провайдеры аутентификации (credential providers), которые могут быть password, Smartcard, PIN, Hello Face. Он порождает процесс LogonUI.exe который и показывает пользователю интерфейс для аутентификации, а после валидирует введённые данные (логин и пароль, PIN).

Если всё прошло успешно, то WinLogon запускает процесс указанный в ключе реестра HKLMSOFTWAREMicrosoftWindows NTCurrentVersionWinLogonUserinit. По умолчанию это процесс UserInit.exe, который:

  1. Запускает скрипты указанные в реестрах:
    • HKCUSoftwarePoliciesMicrosoftWindowsSystemScripts
    • HKLMSOFTWAREPoliciesMicrosoftWindowsSystemScripts
  2. Если групповая политика безопасности определяет User Profile Quota, запускает %SystemRoot%System32Proquota.exe
  3. Запускает оболочку Windows, по умолчанию это Explorer.exe. Этот параметр конфигурируется через реестр:
    • HKCUSoftwareMicrosoftWindows NTCurrentVersionWinlogonShell
    • HKLMSOFTWAREMicrosoftWindows NTCurrentVersionWinlogonShell

WinLogon уведомляет Network Provider о залогинившемся пользователе, на что тот восстанавливает и подключает системные диски и принтеры сохранённые в реестре. Network Provider представляет из себя файл mpr.dll из системной папки, который хостится в процессе svchost.exe, т.е. сервис Windows.

Дерево процессов выглядит следующим образом, на нём можно увидеть кто и кого создал (показаны не все процессы, может немного отличаться от последний версий Windows).

Где здесь клавиатура?

Во время запуска ядро Windows считывает из реестра информацию о контроллере системной шины, как правило это шина PCI (реже MSI), к ней подключены контроллеры портов ввода-вывода, в том числе и USB, PS/2. Информация о нём записывается во время установки Windows. Система загружает для него драйвер и рекурсивно обходит все порты так же загружая для каждого из них свой драйвер. Драйвера могут комбинироваться в узлы (driver node), к примеру драйвер клавиатуры, будет соединён с драйвером порта PS2. А вот порт USB сложнее — сначала драйвер порта, потом драйвер для работы с протоколом HID и только потом клавиатура.

Каждый порт контроллируется своим чипом, который мониторит подключение, принимает/отправляет сигналы между CPU и устройством. Если чип-сет Южный мост не встроен в CPU, как это часто делают в ноутбуках, а существует отдельным чипом на материнке, то правильней говорить: сигнал между Южным мостом и контроллером порта. Чип контроллирующий порт имеет выделенную линию с контроллером прерываний (PIC или APIC), по которой он может попросить обратить на себя внимание CPU, к примеру считать данные от клавиатуры (порт PS/2, с USB другая история). Поскольку ОС загрузила для порта драйвер, она может отдавать ему команды, читать и отправлять данные. В нашем примере был загружен драйвер из C:WindowsSystem32i8042prt.sys. Давайте вспомним предыдущую статью. В старых компьютерах с PIC на чипе Intel 8259 было 15 линий прерываний, где клавиатура была подключена к ножке IRQ1, таймер IRQ0, а мышка к IRQ12, который на самом деле был пятой ножкой второго чипа 8259, который мультиплексировал свои прерывания через ножку IRQ2 первого контроллера. В современных PIC могут быть 255 контактов для сигналов прерываний. Во время загрузки ОС программирует APIC/PIC возвращать определённое число когда скажем пришло прерывание от порта клавиатуры или USB и по этому номеру CPU находит в таблице векторов прерываний функцию которую надо выполнить. Номер прерываний определяют HAL и Plug’n’Play Manager. Контроллер прерываний ищет сигнал на своих ножках в определённом порядке, к примеру в бесконечном цикле проверяет напряжение на ножках от 1 до MAX_PIN. Этот порядок определяет приоритет, к примеру клавиатура будет замечена раньше мышки, а таймер раньше клавиатуры. Чтобы не зависеть от особенностей работы контроллеров прерываний Windows абстрагирует концепцию IRQ (Interrupt Request) в IRQL (Interrupt Request Level). Будь у контроллера прерываний хоть 15 хоть 255 линий они все будут отображены на 32 IRQL для x86 и 15 IRQL для x64 и IA64.

Что означают приоритеты IRQL:

  1. High – когда происходит краш системы, обычно это вызов функции KeBugCheckEx.
  2. Power Fail – не используется. Изначально был придуман для Windows NT.
  3. Interprocessor Interrupt – нужен отправить запрос другому CPU на мультипроцессорной системе выполнить действие, например обновить TLB cache, system shutdown, system crash (BSOD).
  4. Clock – нужен чтобы обновлять системные часы, а так же вести статистику сколько времени потоки проводят в режиме пользователя и ядра.
  5. Profile – используется для real-time clock (local APIC-timer) когда механизм kernel-profiling включен.
  6. Device 1 … Device N – прерывания от устройств I/O. Во время прерывания данные от клавиатуры, мыши и других устройств считываются в отдельные буфера и сохраняются в объектах типа DPC (Deferred Procedure Call), чтобы обработать их позже и дать возможность устройствам переслать данные. После приоритет снижается до Dispatch DPC
  7. Dispatch DPC — как только данные от устройств получены можно начинать их обрабатывать.
  8. APC — Asynchronous Procedure Call. Через этот механизм вы можете исполнить код когда поток будет спать вызвав WaitForSingleObject, Sleep и другие.
  9. Passive/Low — здесь исполняются все приложения в User Mode.

Если вы всегда программировали в режиме пользователя, то никогда не слышали про IRQL, потому что все пользовательские программы выполняеются с приоритетом Passive/Low (0). Как только происходит событие с большим уровнем приоритета (событие от клавиатуры, таймер планировщика потоков), процессор сохраняет состояние прерванного потока, которое представляет из себя значения регистров CPU, и вызывает диспетчер прерываний (interrupt dispatcher, просто функция), который повышает приоритет IRQL через API KeRaiseIrql в HAL и вызывает непосредственно сам код обработчика (interrupt’s service routine). После этого IRQL CPU понижается до прежнего уровня через функцию KeLowerIrql и прерванный поток начинает обработку с того же места где его прервали. На этом механизме основан планировщик потоков. Он устанавливает таймер, который с определённым интервалом (квант времени) генерирует прерывание с приоритетом DPC/Dispatch (2) и в своей interrupt’s service routine по определённому алгоритму назначает новый поток на исполнение.

Механизм IRQL реализовывается на уровне софта в Hardware Abstraction Layer (HAL.dll), а не железа. В Windows системах есть драйвер шины (bus driver), который определяет наличие устройств подключенных к шинам – PCI, USB и др. и номера прерываний которые могут быть назначены каждому устройству. Драйвер шины сообщает эту информацию Plug and play manager, который уже решает какие номера прерываний назначить каждому устройству. Далее арбитр прерываний внутри PnP Mgr (PnP interrupt arbiter) устанавливает связи между IRQ и IRQL.

Когда приходит прерывание от клавиатуры, любой исполняемый в данный момент поток (это может быть ваша программа) назначается на его обработку. Interrupt dispatcher повышает приоритет IRQL CPU до одного из уровней Device1-DeviceN. После этого менеджер виртуальной памяти не сможет найти страницу если она не загружена в RAM (не сможет обработать Page Fault), планировщик потоков не сможет прервать выполнение, потому что они все работают с меньшим уровнем IRQL. Главная задача драйвера клавиатуры в этот момент считать полученные данные и сохранить их для дальнейшей обработки. Данные записываются в объект типа _DPC (Deferred Procedure Call), который сохраняется в список DPC потока (что-то вроде std::list<DPC>, в ядре ОС вместо массивов используются связанные списки). Как только прерывания от всех внешних устройств обработаны, IRQL потока понижается до уровня DPC в котором и производится обработка отложенных процедур (DPC). В коде обработчика DPC для клавиатуры вызывается функция из драйвера клавиатуры Kbdclass.sys:

VOID KeyboardClassServiceCallback(
  _In_    PDEVICE_OBJECT       DeviceObject,
  _In_    PKEYBOARD_INPUT_DATA InputDataStart,
  _In_    PKEYBOARD_INPUT_DATA InputDataEnd,
  _Inout_ PULONG               InputDataConsumed
);

Так вот, драйвер клавиатуры (kbdclass.sys) получает данные от порта (USB, PS2) через прерывание и записывает их через WriteFile, компонент внутри ядра Windows просыпается, считывает их используя API ReadFile и добавляет в очередь сообщений с клавиатуры. API для работы с файлом могут использоваться для чтения данных с драйверов. С этого момента начинается обработка данных стеком ввода Windows, об этом в следующей статье.

Если у вас есть ПК с PS2 портом и вы умеете пользоваться WinDbg в режиме ядра, то можете легко найти обработчик прерываний клавиатуры напечатав команду !idt, которая выведет на экран всю таблицу векторов прерываний. Прерывание вклинивается в ход выполнения программы, слово вектор здесь подразумевает направление, направление исполнения программы. WinDbg был сделан специально для отладки Windows, самая последняя версия называется WinDbgX. Он имеет текстовый интерфейс, который отпугивает людей привыкших к Visual Studio, однако предоставляет гораздо больше возможностей, в частности исполнение скриптов. Прерывание фиолетового порта PS2 выделено красным. Функция которая его обрабатывает называется I8042KeyboardInterruptService, которая находится в файле i8042prt.sys.

BOOLEAN
I8042KeyboardInterruptService(
  IN  PKINTERRUPT Interrupt,
  IN  PVOID Context
  );

Routine Description:

    This is the interrupt service routine for the keyboard device when
    scan code set 1 is in use.

Arguments:

    Interrupt - A pointer to the interrupt object for this interrupt.

    Context - A pointer to the device object.

Return Value:

    Returns TRUE if the interrupt was expected (and therefore processed);
    otherwise, FALSE is returned.

Сейчас возникает вопрос, откуда у обработчика прерываний аргумент? Кто его передаёт? Ведь CPU ничего не знает о нём. Если поставите в неё breakpoint, то удивитесь ещё больше увидев несколько функций выше по стеку:

0: kd> kC
# Call Site
00 i8042prt!I8042KeyboardInterruptService
01 nt!KiCallInterruptServiceRoutine
02 nt!KiInterruptSubDispatch
03 nt!KiInterruptDispatch
04 nt!KiIdleLoop

Объяснение здесь простое – это не та функция которая сохранена в регистре IDT процессора. То что вы видите на картинке выше на самом деле объекты типа _KINTERRUPT. В таблице прерываний сохранён специальный ассемблерный код (nt!KiIdleLoop), который знает как найти объект описывающий прерывание в памяти. Что же интересного есть в нём?

  1. Указатель на объект представляющий драйвер в памяти.
  2. Указатель на функцию i8042prt!I8042KeyboardInterruptService, которая и вызывает код считывающий данные из порта PS2 через ассемблерную команду IN AL, 0x60 – сохранить значение из порта номер 0x60 в регистре AL.
  3. Функция dispatcher – ей передаётся указатель функцию из пункта №2 и она вызывает её.
  4. Состояние регистров CPU. Перед вызовом прерывания состояние CPU будет сохранено сюда, и отсюда же будет восстановлено.
  5. Приоритет прерывания. Не тот который определяет контроллер прерываний, а тот который Windows считает нужным. Это IRQL (Interrupt Request Level) – абстракция над IRQ.

Как только обработчик прерываний клавиатуры будет вызван, он уведомит драйвер клавиатуры о полученных данных, после чего будет уведомлено ядро ОС, которое обработав данные отправит их дальше по стеку ввода, где они могут быть доставлены приложению, которое на них отреагирует, или перед этим в обработчик языков (азиатские иероглифы, автокоррекция, автозаполнение).
Ядро ОС напрямую не взаимодействует с драйвером клавиатуры, для этих целей используется Plug’n’Play Manager. Этот компонент предоставляет API IoRegisterPlugPlayNotification, который вызовет предоставленную callback-функцию когда устройство будет добавлено или удалено.

Пару слов о USB

Ознакомление с работой порта USB потребовало бы отдельной статьи описывающей его работу и плюс описание обработки данных HID на Windows. Это очень сильно усложнило бы материал, к тому же уже есть хорошие статьи по теме, поэтому PS2 идеальный пример из-за своей простоты.

USB создавался как универсальный порт для всех устройств, будь то клавиатура, фотоаппарат, сканнер, игровой руль с педалями, принтер и пр. Вдобавок он поддерживает вложенность портов – USB материнки => монитор с USB => клавиатура с USB к которой подключена мышка, флешка и USB-hub к которому подключен жёсткий диск. Взглянув на контакты USB 2.0 вы увидите что они не заточены под передачу каких-то определённых данных, как у PS2. Их всего четыре – витая пара для передачи битов данных, плюс и минус питания.

Провода кабеля USB 2.0

USB 3.0 быстрее за счёт дополнительных пяти контактов. Как видите там нету линии CLOCK для синхронизации, поэтому логика передачи данных сложнее. Слева USB 2.0 и справа USB 3.0 для сравнения.

Все данные передаются через протокол HID (Human Interface Device), который описывает форматы, порядок взаимодействия и передачи данных и всё остальное. Стандарт USB 2.0 занимает 650 страниц, документ HID Class Specification, описывающий работу устройств (мыши, клавиатуры и пр) – 97 страниц, их рекомендуется изучить если вы работаете с USB.

Первым делом подключенное устройство должно рассказать о себе, для этого оно отправляет несколько структур данных, в которых указывается ID устройства и ID производителя по которым Plug’n’Play manager может найти в реестре информацию, загрузить и соединить драйвера. USB устройства пассивны, т.е. хост должен сам с определённым интервалом проверять наличие данных. Частота опроса и размер пакета данных задаются в одном из дескрипторов устройства USB. Максимальный размер пакета – 64 байта, что для информации о нажатых клавишах более чем достаточно.

В Windows есть встроенная поддержка HID, она не такая простая как связь драйвера порта PS2 с драйвером клавиатуры, потому что драйвер HID должен уметь обрабатывать все поддерживаемые протоколом сценарии. Вне зависимости от провайдера данных — порты PS2, USB или Remote Desktop или виртуальная машина – на самом верху driver node будет находится Kbdclass, от которого ядро ОС и будет получать информацию. Уведомление о подсоединении клавиатуры будет обрабатываться через Plug’n’Play Manager, так что для ядра Windows не имеет значение какой порт или источник данных от устройства используется.

ч.1 — Основы ОС и компьютера
ч.2 — Как работает материнская плата и клавиатура через порт PS2

Загрузка ОС происходит в несколько этапов:

1. После нажатия кнопки включения или перезагрузки управление берет на себя Базовая система ввода/вывода (Basic Input/Output System — BIOS). BIOS — это программа, записанная в постоянной энергонезависимой памяти компьютера -ПЗУ (английская аббревиатура — CMOS). BIOS производит тестирование и инициализацию всех устройств и, если они прошли успешно, считывает MBR по абсолютному адресу. Затем помещает считанный код главного загрузчика в оперативную память и передает ему управление.

2. Главный загрузчик определяет, откуда следует загружать ОС. В зависимости от типа загрузчика управление будет передано либо загрузочному коду, находящемуся в активном разделе жесткого диска, либо менеджеру загрузки, либо сам загрузчик поместит ядро ОС в оперативную память и передаст ему управление.

3. Получивший управление загрузчик операционной системы инициирует загрузку ядра ОС в память.

4. Запускается сама операционная система.
Как видно из вышесказанного, при загрузке компьютера используются абсолютные адреса, т.е. номера жестких дисков, цилиндров, головок, секторов, блоков. Выполнение этапов загрузки происходит по жестко заданной цепочке. Для успешной загрузки ОС необходимо, чтобы все участники цепочки находились на своих строго определенных местах: главный загрузчик и основная таблица разделов в загрузочном секторе диска, загрузчик(и) ОС и таблицы разделов в остальных разделах диска.

При нарушении этого порядка, например, при подключении нового диска к компьютеру, на котором уже установлена одна или несколько операционных систем, возможна ситуация, когда процесс остановится с сообщением типа «ОС не найдена».

← Особенности загрузки различных ОС Загрузка DOS

  Загрузчик системы →

Что означают слова «мой компьютер не запускается»?

Каждый сетевой администратор постоянно сталкивается с ситуацией, когда пользователи, жалующиеся на неполадки, произносят туманную фразу, которая может слегка испортить настроение: «Компьютер не запускается!» Обычно при этом пользователи сообщают, что нечто непредвиденное произошло в процессе загрузки — либо во время самотестирования компьютера (Power On Self Test, POST), либо во время процедур начальной загрузки Windows. Для диагностики и устранения подобных проблем администратор должен понимать, что происходит в процессе загрузки.

Термин «сбой в процессе загрузки» относится и к аппаратным проблемам, и к проблемам операционной системы. Во времена компьютеров с MS-DOS, POST занимал больше времени, чем загрузка операционной системы, и аппаратура была источником большинства проблем при начальной загрузке. За последние годы аппаратное обеспечение стало более надежным, а благодаря развитым функциям BIOS возможности мониторинга, диагностики и управления оборудованием стали значительно шире. Поэтому в ситуации сбоя во время загрузки пользователи, скорее всего, сталкиваются именно с проблемой операционной системы. Давайте последовательно изучим процесс начальной загрузки, наблюдая, что происходит на каждом этапе, и уясним смысл каждого появляющегося сообщения об ошибке. Для удобства будем предполагать, что используются Windows 2000 или более поздние версии.

Включение питания

Не жалуется ли пользователь, что ничего не происходит, когда он нажимает кнопку питания? Если да, то сначала проверьте кабель.

Вот старый администраторский трюк на случай, если проходится иметь дело с выключенным из розетки компьютером при разговоре с пользователем по телефону. Пользователи часто не проверяют, включен ли их компьютер в розетку, а когда вы указываете им на такую возможность, возмущаются. Пользователь может воскликнуть: «Конечно, он включен!», но следует проверить, правда ли это. Попросите пользователя вынуть вилку из розетки и вставить заново, ссылаясь на необходимость «проверить полярность». Постарайтесь не хихикать. Просто невероятно, как часто пользователи отвечают: «О, сработало!»

Если дело не в вилке, то, возможно, в источнике бесперебойного питания — тоже уязвимом аппаратном компоненте системе. Источники бесперебойного питания стоят недорого, но замена аккумуляторов в них — утомительная и трудоемкая задача.

Проверка оборудования и BIOS

Если пользователь видит сообщение об ошибке в процессе POST или если компьютер просто зависает, прежде чем запускается операционная система, значит, проблема в оборудовании или в BIOS. Система выводит на экран сообщения об ошибках оборудования и BIOS и подает характерные звуковые сигналы. Некоторые ошибки BIOS выводятся в виде чисел и некогда все производители BIOS использовали одни и те же числа (те, что придумали в IBM), но теперь все изменилось. Теперь, чтобы интерпретировать номер ошибки, администратору требуется документация, пришедшая вместе с компьютером. Также можно поискать ее на Web-сайте производителя BIOS. Однако, скорее всего, на экране появится текст, а не числа, например Hard drive controller failure («Ошибка контроллера жесткого диска») или забавное сообщение Keyboard error, press F1 to continue («Ошибка клавиатуры, нажмите F1 для продолжения»).

Возможно, появится сообщение об ошибке, относящейся к проблемам с памятью. Когда-то память имела дополнительный компонент, называвшийся «чип четности», и частью теста BIOS была проверка на четность. Компоненты памяти больше не содержат чип четности, поскольку теперь в этом нет необходимости: производители памяти так продвинулись по пути совершенствования своих продуктов, что ошибки памяти стали крайне редки. Тем не менее после добавления в компьютер памяти при последующей загрузке может появиться сообщение об ошибке памяти. Сообщение содержит примерно такой текст: Mismatched memory information («Несоответствие параметров памяти»). В действительности это сообщение является подтверждением того, что система видит установленную память, но обнаружила, что она не соответствует общему количеству, записанному в CMOS.

Чтобы решить эту проблему, можно попробовать перезагрузить компьютер и войти в режим настройки BIOS. По своему опыту знаю, что стоит только нажать клавиши, необходимые для вызова окна BIOS, как сразу же автоматически выполняется корректный подсчет памяти, и все, что остается сделать, это выйти из программы настройки BIOS. Вход в программу настройки BIOS вызывает проверку счетчика памяти и его регулировку относительно имеющейся физической памяти.

Если после добавления в компьютер памяти система выдала сообщение об ошибке, в котором не говорится о разночтении в подсчете объема памяти, значит, проблема оказалась серьезнее. Система не распознает новую память. Эта ситуация почти всегда вызвана неаккуратными действиями при установке памяти, такими как использование неверного слота. В то же время мне доводилось видеть, как проблема вызывалась установкой памяти неверного типа (например, установкой плат памяти DRAM в старый компьютер с Enhanced Data Output, EDO), когда материнская плата не была предназначена для установки памяти смешанного типа, SIMM и DIMM, или когда материнская плата не воспринимала смешивание плат памяти с разными скоростями. Некоторые материнские платы при добавлении памяти нуждаются в изменении положения двухпозиционных переключателей и перемычек, хотя такие требования становятся все менее распространенными. Чтобы избежать подобных проблем, всегда перед добавлением памяти проверяйте документацию материнской платы.

Если во время POST обнаруживается ошибка жесткого диска, значит, работа предстоит немалая. Вообще-то я обнаружила, что в половине случаев проблема оказывается в контроллере, а не в самом диске, и замена контроллера позволяет диску нормально выполнять загрузку с сохранением всех данных неповрежденными (все гениальное просто!). Если контроллер жесткого диска первоначальной комплектации выходит из строя, не нужно сразу бежать за новой материнской платой. Достаточно купить новый контроллер. Вместо поиска встроенной микросхемы прочитайте в документации к материнской плате, что необходимо сделать, чтобы BIOS видел новую плату.

Если проблема действительно в диске, задача не ограничивается только заменой контроллера. Помимо замены диска придется переустановить операционную систему и приложения, а также выполнить восстановление данных из резервной копии, которая, конечно, датирована вчерашним днем, не правда ли?

Управление передается записи Master Boot Record

Далее компьютер начинает загрузку операционной системы. Во время установки программа загрузки Windows помещает данные на первый сектор главного раздела компьютера (загрузочный сектор). Эти данные — не что иное, как Master Boot Record, MBR (главная загрузочная запись), которая содержит исполняемые команды. Программа установки также копирует два файла, инициирующие начальный этап загрузки Windows, — Ntldr и Ntdetect — в корневой каталог загрузочного диска. Кроме того, Windows Setup копирует boot.ini, файл, содержащий параметры загрузки, в корневой каталог загрузочного диска.

Кроме исполняемых команд, MBR содержит таблицу, определяющую расположение главных разделов диска. При установке Windows необязательно делать так, чтобы системный раздел и загрузочный раздел совпадали, хотя это распространенный подход. Загрузочные файлы Windows расположены в системном разделе, а файлы операционной системы — в загрузочном (логика именования отстала от жизни).

Системный раздел содержит файлы привязки к аппаратным компонентам, которые необходимы для загрузки Windows, включая MBR. Этот раздел должен быть главным разделом и отмечается как активный. Это всегда диск 0, поскольку именно к этому диску обращается BIOS, чтобы передать процесс загрузки файлу MBR. Загрузочный раздел содержит файлы операционной системы (папка %systemroot%) и файлы поддержки операционной системы (%systemroot%System).

На последнем шаге аппаратной части начальной загрузки компьютер считывает файл MBR в память и передает управление компьютером коду в MBR. Исполняемый код просматривает таблицу главного раздела и ищет отметку, указывающую на загружаемый раздел. Когда MBR находит первый загружаемый раздел, он считывает первый сектор раздела, который является загрузочным сектором.

Запуск Ntldr

Код загрузочного сектора считывает Ntldr в память, чтобы запустить процесс начальной загрузки операционной системы. В Ntldr хранится доступный только для чтения код NTFS и FAT. Он начинает работать в реальном режиме, и первая выполняемая им задача заключается в переключении системы в некоторую форму защищенного режима. Более подробно об этих режимах рассказано во врезке «Реальный режим против защищенного». Этот первоначальный вариант защищенного режима не может в полной мере выполнять аппаратно-зависимых преобразований, которые обеспечивают защиту оборудования, — данная функция становится доступной, когда операционная система загрузится полностью.

Теперь вся физическая память доступна операционной системе, и компьютер работает как 32-разрядная машина. Ntldr делает возможной постраничную загрузку и создает таблицы страниц. Затем Ntldr считывает boot.ini из корневого каталога и, если на машине многовариантная загрузка или если выполнена настройка boot.ini на отображение меню, на экране появляется меню выбора вариантов загрузки. Если Ntldr отсутствует или поврежден, система выдаст сообщение об ошибке Ntldr is missing. Press Ctrl-Alt-Del to restart.

Не стоит зря тратить время, выполняя предложенное действие: после очередного цикла система вернется к тому же сообщению. Необходимо заменить Ntldr. Если создан загрузочный флоппи-диск, можно использовать его для копирования Ntldr в корневой каталог основного загрузочного диска (обычно C). Если Ntldr отсутствует, следует просто скопировать его. Если файл имеется на жестком диске, возможно, он поврежден. Для того чтобы заменить его, сначала нужно изменить его атрибут «только для чтения». Если загрузочного флоппи-диска под рукой нет, придется запустить программу Setup с компакт-диска Windows и выбрать Repair.

Запуск Ntdetect

Ntldr запускает Ntdetect, который запрашивает BIOS системы о данных конфигурации устройств. Система отправляет информацию, которую Ntdetect собирает в реестр и помещает в подразделы HKEY_LOCAL_MACHINEHARDWARE
DESCRIPTION.

Если возникнет какая-нибудь проблема с Ntdetect (утрата или повреждение), возможно, система не выдаст никакого сообщения об ошибке. Обычно в таком случае процесс загрузки просто останавливается. Единственным действенным средством при утрате или повреждении файла Ntdetect является его замена. Необходимо воспользоваться для загрузки загрузочным флоппи-диском, затем скопировать Ntdetect с этого флоппи-диска в корневой каталог жесткого диска. Или же запустите Setup с компакт-диска Windows и выберите Repair.

Запуск Ntoskrnl и загрузка HAL

После того как Ntdetect закончит выполнение подпрограмм проверки оборудования, он передает процесс загрузки обратно файлу Ntldr, который запускает ntoskrnl.exe и загружает .dll-файл Hardware Abstraction Layer (HAL). (Оба файла расположены в папке %systemroot%system32.) Ntoskrnl — это главный файл ядра Windows и исполнительных подсистем. Он содержит Executive, Kernel, Cache Manager, Memory Manager, Scheduler, Security Reference Monitor и другие. Именно Ntoskrnl приводит в действие Windows. Для работы Ntoskrnl необходим файл hal.dll, который содержит код, позволяющий оборудованию взаимодействовать с операционной системой.

На экране может появиться сообщение об ошибке, говорящее о наличии проблемы с Ntoskrnl, но почти всегда это сообщение фиктивно и появляется потому, что ссылка на папку в boot.ini не совпадает с именем папки, в которую были установлены системные файлы Windows.

Как правило, это означает, что кто-то переименовал папку %systemroot% или создал новую папку и переместил в нее файлы Windows. В таком случае нужно переместить файлы обратно в то место, которое указано в boot.ini. Если boot.ini. был кем-то отредактирован, следует исправить эту ошибку.

Загрузка драйверов и служб

Теперь Ntldr загружает низкоуровневые системные службы и драйверы устройств, но службы не инициализируются — это происходит позже. На этом фаза начальной загрузки завершается и начинается процесс основной загрузки (load sequence или kernel phase).

При загрузке системных служб и драйверов устройств Ntldr следует определенному порядку. В процессе установки Windows драйверы и системные службы копируются на компьютер, а информация о них записывается в реестр. Данные в реестре представляют собой шестнадцатеричную запись, оканчивающуюся числом в круглых скобках. Это число и определяет порядок, в котором Ntldr загружает драйверы и системные службы. Для примера следует открыть реестр и перейти в раздел HKEY_LOCAL_MACHINESYSTEM
CurrentControlSetServices. На экране появится длинный список служб и драйверов устройств. Выберите любой подраздел и взгляните на данные типа REG_DWORD под именем Start.

  • (0) означает, что служба загружается во время фазы основной загрузки.
  • (1) означает, что служба загружается во время фазы инициализации (следующая фаза).
  • (2) означает, что служба загружается во время фазы загрузки, предназначенной для служб.
  • (3) означает, что служба включена, но не инициализируется (запуск службы осуществляется вручную через оснастку Services консоли Microsoft Management Console (MMC)).
  • (4) означает, что служба отключена.

Загрузка операционной системы

Ntoskrnl начинает загрузку операционной системы. Инициализируется ядро Windows и загружаются и инициализируются подсистемы. Эти действия формируют базовые элементы, необходимые для завершения загрузки операционной системы. Загрузочные драйверы, которые модуль Ntldr загрузил ранее, теперь инициализируются, вслед за чем инициализируются оставшиеся драйверы и службы. Когда инициализируются драйверы первого уровня, может возникнуть проблема в виде ошибки STOP или Blue Screen of Death. Это почти всегда бывает в процессе первой загрузки после обновления какого-либо драйвера. Во время инициализации драйвера файлом Ntoskrnl операционная система отторгает его.

Для решения проблемы необходимо перезагрузить компьютер, нажать F8 для отображения меню дополнительных возможностей (Advanced Options) и выбрать вариант загрузки последней успешной конфигурации (Last Known Good Configuration), соответствующей предыдущей версии драйвера.

Теперь ядро Windows и исполняющие модули работоспособны. Программа Session Manager Subsystem (smss.exe) настраивает пользовательскую среду. Система выполняет сверку с реестром, для того чтобы иметь возможность начать загрузку оставшихся драйверов и программного обеспечения, которые необходимо добавить. Ядро операционной системы также загружает файлы kernel32.dll, gdi32.dll и user32.dll, которые обеспечивают программное обеспечение пользователя доступом к Win32 API.

Регистрация компьютера в домене

В то время когда загрузка ядра и инициализация драйверов еще не закончилась, компьютер регистрируется в домене. Используя учетную запись компьютера (уникальное имя с собственным паролем), компьютер открывает защищенный канал к контроллеру домена (DC). Все это происходит до того, как на экране появляется диалоговое окно для регистрации пользователя в системе.

Учетные записи компьютера используются между клиентскими компьютерами (включая автономные серверы) и контроллерами доменов. В пределах одного домена один и тот же процесс происходит с участием нескольких DC. Поэтому важен порядок, в котором включаются компьютеры после штатного отключения. Защищенный канал используется компьютерами для обмена информацией, необходимой для аутентификации и авторизации. Учетные записи компьютера повышают безопасность сети, гарантируя, что пытающийся отправить важную информацию компьютер действительно является членом домена.

В качестве дополнительной меры безопасности компьютеры (как и пользователи в сети с усиленной настройкой системы безопасности) должны периодически менять пароли. По умолчанию интервал смены пароля составляет 30 дней. Когда настает время менять пароль, компьютер генерирует новый пароль и отправляет его по защищенному каналу (доступ к которому он получил, используя предыдущий пароль) на ближайший DC. В дальнейшем для доступа к защищенному каналу компьютер должен использовать новый пароль.

DC немедленно обновляет свою базу данных и реплицирует изменение пароля компьютера на другие DC домена. Пароли учетных записей компьютера содержат отметку о событии первостепенной важности (Announce Immediately), поэтому они не дожидаются следующей репликации DC по расписанию. Иногда эти события могут вызывать заметное снижение производительности. Если у многих или у всех компьютеров домена срок действия паролей заканчивается в один и тот же день, работа, которую должны будут выполнить контроллеры домена, сразу же затормозит другие важные задачи DC, такие как аутентификация пользователей или выполнение запланированных репликаций. Ситуация может осложниться еще и в том случае, если DC предоставляет другие услуги, такие как, например, услуги сервера DNS. Можно изменить способ обслуживания паролей компьютера для домена, для организационной единицы (OU) и для индивидуального компьютера, хотя стремление повысить производительность путем настройки компьютеров по одному неэффективно. В следующей статье я планирую рассказать о методах изменения процедуры регистрации компьютера в домене.

Загрузка служб регистрации пользователя

Подсистема Win32 запускает winlogon.exe, которая выводит на экран диалоговое окно регистрации пользователя и загружает процесс Local Security Authority (lsass.exe). Начинается процесс регистрации, и пользователь должен ввести имя и пароль в диалоговом окне Windows Log On To. Если пользователь указывает правильные имя и пароль, система завершает процесс регистрации, и пользователь может начинать работать. В этот момент загрузка Windows окончена, а текущие параметры загрузки сохраняются в так называемой последней успешной конфигурации (Last Known Good Configuration). Нужно иметь в виду, что успешная регистрация пользователя необходима для сохранения Last Known Good Configuration.

Действительно, сбои во время загрузки мешают всем — и пользователям, и администраторам. Однако, если досконально разобраться в процессе загрузки, проблемы становятся менее устрашающими и администраторам удается без труда решить их.


Реальный режим против защищенного

Тем, кто работает с компьютерами со времен DOS, будет легко понять разницу между реальным и защищенным режимом. Но для тех, чье знакомство с компьютером состоялось после распространения Windows, она может быть не столь очевидной.

Если компьютер работает в реальном режиме, программы взаимодействуют непосредственно с его портами и устройствами. Например, когда происходит печать документа, программа отправляет поток данных прямо на порт принтера. Однако эта парадигма не подходит для многозадачной операционной системы. Представьте, что произойдет, если несколько программ станут одновременно отправлять потоки данных на порты компьютера. Порты недостаточно интеллектуальны и не имеют никакой возможности фильтровать или упорядочивать потоки данных в соответствии с отправляющими программами.

Если компьютер работает в защищенном режиме, порты и устройства системы защищены от приложений, которые их используют. Программа полагает, что отправляет данные на порт, но это виртуальный порт. Операционная система перехватывает поток данных и управляет им так, чтобы все приложения имели равный доступ к устройствам и чтобы данные каждого приложения не смешивались с данными других приложений.


Кэти Ивенс (kivens@win2000mag.com) — редактор Windows & .NET Magazine. Является соавтором более 40 книг по компьютерной тематике, включая «Windows 2000: The Complete Reference»

Понравилась статья? Поделить с друзьями:
  • Эхинацея экстракт таблетки инструкция по применению
  • Кувшинка из модулей оригами пошаговая инструкция
  • Навоиазот официальный сайт руководство
  • Рим 040 03 инструкция как снимать показания
  • Виферон 10000000 свечи инструкция по применению