Ваз руководство система впрыска

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

подборка впрыск.docx

Скачиваний:

38

Добавлен:

17.04.2015

Размер:

510.08 Кб

Скачать

  1. Система впрыска топлива автомобилей ваз

На автомобилях ВАЗ-2110,
ВАЗ-2111 и ВАЗ-2112 электронная система
уп­равления двигателем, т.е. система
рас­пределенного впрыска топлива.
Эта система применяется на двигателях
2111 и 2112. Распределенным впрыск называется
потому, что для каждого цилиндра топливо
впрыскивается от­дельной форсункой.
Система впрыска топлива позволяет
снизить токсич­ность отработавших
газов при улучше­нии ездовых качеств
автомобиля.

Существуют системы
распределен­ного впрыска с обратной
связью и без нее. Причем обе системы
могут быть с импортными комплектующими
или отечественными. Контроллеры
(элек­тронные блоки управления) тоже
могут устанавливаться разных типов.
Все эти системы имеют свои особенности
в ус­тройстве, диагностике и в ремонте,
ко­торые подробно описаны в
соответст­вующих
отдельных Руководствах по ре­монту
конкретных систем впрыска топ­лива
с определенным контроллером.

В настоящей подборке дается
только краткое описание общих принципов
устройства, работы и диагностики сис­тем
впрыска топлива на примере сис­темы
с контроллером «Январь-4».

Система с обратной связью
приме­няется, в основном, на экспортных
ав­томобилях. У нее в системе выпуска
устанавливается нейтрализатор и дат­чик
кислорода, который и обеспечива­ет
обратную связь. Датчик отслежива­ет
концентрацию кислорода в отрабо­тавших
газах, а контроллер по его сиг­налам
поддерживает такое соотноше­ние
воздух/топливо, которое обеспе­чивает
наиболее эффективную работу нейтрализатора.

В системе впрыска без
обратной свя­зи не устанавливаются
нейтрализатор и датчик кислорода, а для
регулировки концентрации СО в отработавших
га­зах служит СО-потенциометр. В этой
системе не применяется также систе­ма
улавливания паров бензина. Возможен
вариант системы впрыска и без
СО-потенциометра, тогда содержание СО
регулируется с помощью диагнос­тического
прибора.

Существует еще система
последова­тельного распределенного
впрыска топлива или фазированного
впрыска. Она применяется с двигателем
2112. Здесь дополнительно устанавливается
датчик фаз, определяющий момент конца
такта сжатия в 1-м цилиндре, а топливо
подается форсунками по ци­линдрам в
последовательности, соот­ветствующей
порядку зажигания в ци­линдрах (1
-3-4-2).

2.1 Устройство системы

2.1.1 Датчики

  • Датчик температуры
    охлаждаю­щей жидкости
    представляет
    собой термистор (резистор, сопротивление
    которого изменяется от температуры).
    Датчик завернут в выпускной патрубок
    охлаждающей жидкости на головке
    ци­линдров. При низкой температуре
    дат­чик имеет высокое сопротивление
    (при -40 °С — 100 кОм), а при высокой
    темпе­ратуре — низкое (при 100 °С — 177
    Ом).

Температуру охлаждающей
жидкости контроллер рассчитывает по
падению напряжения на датчике. Падение
на­пряжения высокое на холодном
двига­теле и низкое на прогретом.
Темпера­тура охлаждающей жидкости
влияет на большинство характеристик,
которы­ми управляет контроллер.

  • Датчик детонации
    заворачивается в верхнюю часть блока
    цилиндров (рис. 2.2) и улавливает аномальные
    вибрации (детонационные удары) в
    двигателе. Чувствительным элементом
    датчика является пьезокристаллическая
    плас­тинка. При детонации на выходе
    датчи­ка генерируются импульсы
    напряже­ния, которые увеличиваются
    с возрас­танием интенсивности
    детонационных ударов. Контроллер по
    сигналу датчи­ка регулирует опережение
    зажигания для устранения детонационных
    вспы­шек топлива.

Рисунок 2.5 Схема
системы впрыска топлива:
1 — воздушный
фильтр; 2 — датчик массового расхода
воздуха; 3 — шланг впускной трубы; 4 —
шланг подвода охлаждающей жидкости;
5 — дроссельный патру­бок; 6 — регулятор
холостого хода; 7 — датчик положения
дроссельной заслонки; 8 — канал подогрева
си­стемы холостого хода; 9 — ресивер;
10 — шланг регулятора давления; 11
-контроллер; 12 — реле включе­ния
электробензонасоса; 13 — топливный
фильтр; 14 — топливный бак; 15 —
электробензонасос с датчи­ком уровня
топлива; 16 — сливная магистраль; 17 —
подающая магистраль; 18 — регулятор
давления; 19 — впускная труба; 20 — рампа
форсунок; 21 — форсунка; 22 — датчик
скорости; 23 — датчик концентра­ции
кислорода; 24 — газоприемник приемной
трубы глушителей; 25 — коробка передач;
26 — головка ци­линдров; 27 — выпускной
патрубок системы охлаждения; 28 — датчик
температуры охлаждающей жидко­сти;
А — к подводящей трубе насоса охлаждающей
жидкости.

Рисунок
2.6 Расположение датчика детонации
на двигателе:

1 — датчик детонации.

  • Датчик концентрации
    кислорода (λ-зонд)
    применяется в
    системе впрыска с об­ратной связью
    и устанавливается на приемной трубе
    глушителей. Кисло­род, содержащийся
    в отработавших га­зах, реагирует с
    датчиком кислорода, создавая разность
    потенциалов на вы­ходе датчика. Она
    изменяется прибли­зительно от 0,1 В
    (высокое содержание кислорода — бедная
    смесь) до 0,9 В (мало кислорода —
    богатая смесь). Для нормальной работы
    датчик дол­жен иметь температуру не
    ниже 360 °С. Поэтому для быстрого прогрева
    после пуска двигателя в датчик встроен
    на­гревательный элемент. Отслеживая
    выходное напряжение датчика концентрации
    кислорода, контроллер определяет, какую
    коман­ду по корректировке состава
    рабочей смеси подавать на форсунки.
    Если смесь бедная (низкая разность
    потен­циалов на выходе датчика), то
    дается команда на обогащение смеси.
    Если смесь богатая (высокая разность
    потенциалов) — дается команда на
    обед­нение смеси.

  • Датчик массового расхода
    возду­ха
    расположен между воздушным
    фильтром и шлангом впускной трубы. В
    нем находятся температурные дат­чики
    и нагревательный резистор. Про­ходящий
    воздух охлаждает один из датчиков, а
    электронный модуль дат­чика преобразует
    эту разность темпе­ратур датчиков в
    выходной сигнал для контроллера. В
    разных вариантах систем впрыска топлива
    могут применяться датчики массового
    расхода воздуха двух типов. Они отличаются
    по устройству и по ха­рактеру
    выдаваемого сигнала, кото­рый может
    быть частотным или анало­говым. В
    первом случае в зависимости от расхода
    воздуха меняется частота сигнала, а во
    втором случае — напря­жение. Контроллер
    использует информацию от датчика
    массового расхода воздуха для определения
    длительности им­пульса открытия
    форсунок.

  • СО-потенциометр уста­новлен
    в моторном отсеке на стенке коробки
    воздухопритока и представля­ет собой
    переменный резистор. Он вы­дает в
    контроллер сигнал, который ис­пользуется
    для регулировки состава топливо-воздушной
    смеси с целью по­лучения нормированного
    уровня кон­центрации окиси углерода
    (СО) в отра­ботавших газах на холостом
    ходу. СО-потенциометр подобен винту
    качества смеси в карбюраторах. Регулировка
    содержания СО с помощью СО-потен­циометра
    выполняется только на стан­ции
    технического обслуживания с при­менением
    газоанализатора.

  • Датчик скорости автомобиля
    уста­навливается
    на коробке передач между приводом
    спидометра и наконечником гибкого вала
    привода спидометра. Принцип действия
    датчика основан на эффекте Холла. Датчик
    выдает на кон­троллер прямоугольные
    импульсы на­пряжения с частотой,
    пропорциональ­ной скорости вращения
    ведущих колес.

  • Датчик положения дроссельной
    заслонки
    установлен сбоку на
    дрос­сельном патрубке и связан с осью
    дроссельной заслонки. Датчик представляет
    собой потенци­ометр, на один конец
    которого подаётся плюс напряжения
    питания (5 В), а другой конец соединен с
    массой. С третьего вывода потенциометра
    (от ползунка) идет выходной сигнал к
    кон­троллеру. Когда дроссельная
    заслонка повора­чивается
    (от воздействия на педаль уп­равления),
    изменяется напряжение на выходе датчика.
    При закрытой дрос­сельной заслонке
    оно ниже 0,7 В. Ког­да заслонка
    открывается, напряжение на выходе
    датчика растет и при полно­стью
    открытой заслонке должно быть более 4
    В.

Отслеживая выходное
напряжение датчика контроллер корректирует
по­дачу топлива в зависимости от угла
от­крытия дроссельной заслонки (т.е.
по желанию водителя).

Датчик положения дроссельной
за­слонки не требует никакой
регулиров­ки, т.к. контроллер воспринимает
холо­стой ход (т.е. полное закрытие
дрос­сельной
заслонки) как нулевую отметку.

  • Датчик положения коленчатого
    вала
    — индуктивного типа, предназна­чен
    для синхронизации работы кон­троллера
    с верхней мертвой точкой поршней 1-го
    и 4-го цилиндров и угло­вым положением
    коленчатого вала. Датчик установлен
    на крышке мас­ляного насоса напротив
    задающего диска на шкиве привода
    генератора. Задающий диск представляет
    собой зубчатое колесо с 58 равноудаленны­ми
    (6°) впадинами. При таком шаге на диске
    помещается 60 зубьев, но два зуба срезаны
    для создания импульса «в» (рис. 2.3)
    синхронизации («Опорного» импульса),
    который не­обходим для согласования
    работы контроллера с ВМТ поршней в 1-ом
    и 4-ом цилиндрах.

Рисунок 2.7 Осциллограмма
импульсов напря­жения датчика
положения коленчатого вала: а — угловые
импульсы; б — опорный импульс.

При вращении коленчатого
вала зу­бья изменяют магнитное поле
датчика, наводя импульсы напряжения
пере­менного тока. Установочный зазор
между сердечником датчика и зубом диска
должен находиться в пределах (1+0,2) мм.

Контроллер по сигналам
датчика оп­ределяет частоту вращения
коленча­того вала и выдает импульсы
на фор­сунки.

  • Датчик фаз применяется
    в системе с последовательным впрыском
    топли­ва и
    устанавливается с левой передней
    стороны головки цилиндров. Принцип
    его действия основан на эффекте Хол­ла.
    В пазу датчика находится обод стального
    диска с прорезью. Этот диск закреплен
    на шкиве впускного распре­делительного
    вала. Когда прорезь дис­ка проходит
    через паз датчика фаз, он выдает на
    контроллер отрицательный импульс,
    соответствующий положе­нию поршня
    1-го цилиндра в ВМТ в конце такта сжатия.

  • Сигнал запроса на включение
    кон­диционера.
    Если на автомобиле
    уста­новлен кондиционер, то сигнал
    посту­пает от выключателя кондиционера
    на панели приборов. В данном случае
    контроллер получает информацию о том,
    что водитель желает включить кондиционер.
    Получив такой сигнал, контроллер сначала
    подстраивает регулятор холо­стого
    хода, чтобы компенсировать до­полнительную
    нагрузку на двигатель от компрессора
    кондиционера, а затем включает реле,
    управляющее работой компрессора
    кондиционера.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Работа системы впрыска ВАЗ 2110

Общие сведения

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от контроллера (электронного блока управления). Контроллер отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива – сокращается.

Контроллер обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» контроллера является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Топливо подается по одному из двух разных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива – преимущественно применяемый метод. Асинхронный впрыск топлива применяется в основном на режиме пуска двигателя.

Форсунки включаются попарно и поочередно: сначала форсунки 1-го и 4-го цилиндров, а через 180° поворота коленчатого вала – форсунки 2-го и 3-го цилиндров и т.д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т.е. два раза за полный рабочий цикл двигателя.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются контроллером и описаны ниже.

Первоначальный впрыск топлива. Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от контроллера на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается для увеличения количества топлива, а на прогретом – длительность импульса уменьшается. После первоначального впрыска контроллер переключается на соответствующий режим управления форсунками.

Режим пуска двигателя. При включении зажигания контроллер включает реле электробензонасоса, и он создает давление в магистрали подачи топлива к топливной рампе. Контроллер проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала контроллер работает в пусковом режиме, пока обороты не превысят 400 мин–1 или не наступит режим продувки «залитого» двигателя.

Режим продувки двигателя. Если двигатель «залит топливом» (т.е. топливо намочило свечи зажигания), он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом контроллер не подает импульсы впрыска на форсунки, и двигатель должен «очиститься». Контроллер поддерживает этот режим до тех пор, пока обороты двигателя ниже 400 мин–1 и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).

Если дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запустится, так как при полностью открытой дроссельной заслонке импульсы впрыска на форсунку не подаются.

Рабочий режим управления топливоподачей. После пуска двигателя (когда обороты более 400 мин–1) контроллер управляет системой подачи топлива в рабочем режиме. На этом режиме контроллер рассчитывает длительность импульса на форсунки по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

Рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14,7:1. Примером может служить непрогретое состояние двигателя, так как при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Рабочий режим для системы впрыска с обратной связью. В этой системе контроллер сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в том, что в системе с обратной связью контроллер еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6–14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Работа системы с последовательным (фазированным) впрыском топлива. Отличие этой системы от описанных выше состоит в том, что контроллер включает форсунки не попарно, а последовательно, в порядке зажигания по цилиндрам (1–3–4–2). Датчик фаз дает контроллеру сигнал о том, когда 1-й цилиндр находится в ВМТ в конце такта сжатия. На основании этого сигнала контроллер рассчитывает момент включения каждой форсунки, причем каждая форсунка впрыскивает топливо один раз за два оборота коленчатого вала двигателя, т.е. за один полный рабочий цикл. Такой метод позволяет более точно дозировать топливо по цилиндрам и понизить уровень токсичности отработавших газов.

Режим обогащения при ускорении. Контроллер следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим мощностного обогащения. Контроллер следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и контроллер изменяет соотношение воздух/топливо приблизительно до 12:1. В системе впрыска с обратной связью на этом режиме сигнал датчика концентрации кислорода игнорируется, так как он будет указывать на обогащенность смеси.

Режим обеднения при торможении. При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиться выбросы в атмосферу токсичных компонентов. Чтобы не допустить этого, контроллер следит за уменьшением угла открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем. При торможении двигателем с включенной передачей и сцеплением контроллер может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания. При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. Контроллер компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) контроллер уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива. При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если контроллер не получает опорных импульсов от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 мин–1, для защиты двигателя от перекрутки.

Управление электровентилятором системы охлаждения. Электровентилятор включается и выключается контроллером в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле, расположенного под консолью панели приборов с правой стороны.

При работе двигателя электровентилятор включается, если температура охлаждающей жидкости превысит 104 °С или будет дан запрос на включение кондиционера. Электровентилятор выключается после падения температуры охлаждающей жидкости ниже 101 °С, после выключения кондиционера или остановки двигателя.

Видео про «Работа системы впрыска» для ВАЗ 2110

Принцип работы системы питания инжекторного двигателя.

Какие параметры должны быть на инжекторном двигателе?

Топливная система двигателя

Официальная информация ВАЗ.  Назначение контактов выводов («распиновка») ЭБУ Январь 5, Bosch M1.5.4, Bosch MP7. Назначение контактов выводов («распиновка») ЭБУ M7.9.7 Назначение контактов выводов («распиновка») ЭБУ Январь 4/4.1 и GM Назначение контактов выводов («распиновка») ЭБУ М10.3 Назначение контактов выводов («распиновка») ЭБУ M17.9.7 (ВАЗ) Назначение контактов выводов («распиновка») ЭБУ M74 М86 Евро‑5. Электронная система управления двигателем 21129 автомобилей семейства LADA VESTA с контроллером – устройство и диагностика Скачать МE17.9.7 / M75  Евро‑4. Электронная система управления двигателем автомобилей семейств LADA Priora, LADA Kalina, LADA 4×4, ТИ 3100.25100.12040 Скачать М74 Евро‑4. Электронная система управления двигателем автомобилей семейств LADA SAMARA, LADA KALINA, LADA GRANTA, ТИ 3100.25100.12039 Скачать М74 Евро‑4. Электронная система управления двигателем автомобилей семейств LADA KALINA‑2, LADA GRANTA 16V, ТИ 3100.25100.12052 Скачать М73 Евро‑3. Электронная система управления двигателем автомобилей семейств Lada 110, Lada Samara, Lada 2105, 2107 – устройство и диагностика. Тольятти, АО АВТОВАЗ, 2009 г.  Скачать Bosch M7.9.7.  Система управления двигателем ВАЗ 21114 (1,6 л. 8 кл.) и ВАЗ 21124 (1,6 л. 16 кл.) с распределенным впрыском топлива под нормы токсичности Евро‑3 автомобилей ВАЗ 11183, ВАЗ 21101, ВАЗ 21104. Руководство по тех. обслуживанию и ремонту.  Скачать Bosch M7.9.7.  Система управления двигателем ВАЗ 21114 (1,6 л. 8 кл.) с распределенным впрыском топлива под нормы токсичности Евро‑2. Руководство по диагностике и ремонту.  Скачать. Bosch M7.9.7. Электрическая схема системы распределенного впрыска ВАЗ 21053, 2107, 21074 (1,5 л, 8 кл.)  под нормы токсичности ЕВРО‑2 Скачать Bosch MP7.0H. Система управления двигателем ВАЗ 2111 (1,5 л, 8 кл.) с распределенным впрыском топлива под нормы токсичности ЕВРО‑2. Скачать Bosch MP7.0H. Система управления двигателем ВАЗ 2111 (1,5 л, 8 кл.) и 2112 (1,5 л, 16 кл) с распределенным последовательным впрыском топлива под нормы токсичности ЕВРО‑3 Скачать Bosch M1.5.4N. Электрическая схема системы распределенного впрыска ВАЗ 2107 (1,5 л, 8 кл.)  под нормы токсичности ЕВРО‑2  Скачать Январь 4.1. Система управления двигателем ВАЗ 2111 (1,5 л. 8 кл.) с распределенным впрыском топлива под нормы токсичности России. Руководство диагностике и ремонту.  Скачать Система управления двигателем ВАЗ 2104 (1,45 л. 8 кл.)  с распределенным впрыском топлива под нормы токсичности Евро‑2.  Руководство по тех. обслуживанию и ремонту.  Скачать Шевроле – Нива
Лада «Нива» Электросхемы СУД ВАЗ-2123 – 40 Евро-II (Bosch MP7.0) Руководство по эксплуатации Руководство по ремонту Инструкция по работе с иммобилайзером АПС‑6 Руководство по техническому обслуживанию и ремонту системы управления двигателем Трудоемкости работ по ремонту и техническому обслуживанию Технология технического обслуживания Список взаимозаменяемых деталей Схемы электрооборудования Каталог деталей Руководство по ремонту 2123 2123 Методическое пособие курса повышения квалификации по устройству и диагностике электронных систем управления двигателем (HandOut) Lada Niva 2020 Схемы жгутов проводов Lada Niva GLC Glonass общая электросхема Lada Niva Urban 21310 – 007 – 52 oбщая электросхема

Лада «Калина»

Автомобиль ВАЗ 11183 и его модификации. Технология технического обслуживания и ремонта. Трудоемкости работ по тех. обслуживанию автомобилей ВАЗ 11183. Электросхемы Назначение выводов Системы дистанционного управления электропакетом «Норма» на а/м ВАЗ-11183 Электросхемы Калина 2194х Схемы 2192, 2194 по состоянию на 05.2017 АПС 6.1 и Система Управления Электропакетом «Люкс» (1183 – 3763040/1183 – 3763040 – 10). Схема подключения, устройство и порядок работы. Подушки безопасности а/м Калина  ABS автомобилей семейств LADA Kalina и LADA Priora устройство, диагностика, снятие и установка основных узлов. ТИ 3100.25100.13068. ЭМУРУ – Электро Механический Усилитель Рулевого Управления ВАЗ-11183

ВАЗ 2170 «Приора»

Тех. характеристики, номенклатура, оригинальные узлы. Сборник технологических инструкций. Альбом электрических схем. Альбом электрических схем. (на 04/2016 г.) Схемы ЭСУД а/м Приора, 21702 – 0000050 – 40, 21705 – 0000055 – 41, 21705 – 0000057 – 41/44/45 Каталог деталей и сборочных единиц. Система надувных подушек безопасности. Схема подключения блока комфорта а/м «Приора». Автоматизированная механическая трансмиссия а/м Приора, основные узлы и агрегаты Кондиционер «PANASONIC» Тех. инструкция.

Лада «Гранта»

Трудоемкости работ по техническому обслуживанию и ремонту.  Сборник технологических инструкций по ремонту и техническому обслуживанию. Схема ЭСУД  Лада Гранта Схема ЭСУД 2191 (05/2017) Схемы ЭСУД 2191 (15/2019) Гранта 2190. Каталог деталей и сборочных единиц АКПП снятие/установка основных узлов и деталей. Автоматизированная механическая трансмиссия а/м Лада Гранта, Приора. Система управления. ТИ 3100.25100.12053. Система управления АКП 21902 – 1700010 «JATCO». Устройство, принцип работы, диагностика. ТИ 3100.25100.12049. Lada Granta FL. Сборник электрических схем. Система Lada Connect – устройство и диагностика неисправностей ТИ.3100.25100.12071

Лада «Веста»

Электрические мастер-схемы 21179 Альбом электрических схем Vesta SW Cross (CVT) Усилитель электромеханический рулевого управления а/м Lada Vesta – устройство и диагностика. ТИ 3100.25100.12067 Электрооборудование автомобиля LADA VESTA снятие – установка основных узлов и агрегатов Электрооборудование автомобиля LADA VESTA CNG снятие установка основных узлов и агрегатов ЭСУД 21129 автомобилей семейства LADA VESTA с контроллером М86 ЕВРО‑5 – устройство и диагностика. Изм. 2 Электронная система контроля доступа Lada Vesta. ТИ 3100.25100.12057 Система питания КПГ LADA VESTA. ТИ 3100.25100.12079 Система управления автоматизированной механической трансмиссей LADA Vesta. ТИ 3100.25100.12055 Система экстренного реагирования при авариях автомобилей LADA VESTA. ТИ 3100.25100.12064 Двигатель ВАЗ-21179, устройство и ремонт изм.3 ТИ.3100.25100.40207 Комбинация приборов – диагностика неисправностей. ТИ.3100.25100.12072 Система управления CVT «JATCO». Устройство, принцип работы, диагностика. ТИ 3100.25100.12070 Блок дополнительных функций кузовной электроники. ТИ 3100.25100.12068

Лада «XRAY»

Lada XRAY Технические условия 4514 – 033 – 00232934 – 2018. (Изменение 5) Lada XRAY Электрооборудование снятие и установка основных узлов и деталей. ТИ 3100.25100.20597 ЦБКЭ – Назначение, функции, диагностика. ТИ 3100.25100.12051 ЦБКЭ автомобилей LADA VESTA, LADA XRAY – устройство, диагностика неисправностей, ТИ 3100.25100.12059 Lada XRAY Трансмиссия – снятие, установка. ТИ.3100.25100.20593 (Изменение 3) Lada XRAY Система управления бесступенчатой трансмиссией (CVT). ТИ.3100.25100.12070. Lada XRAY Система ЭГУР. Диагностика неисправностей. ТИ 3100.25100.12079 Lada XRAY Переключатель режимов работы функции EDL системы курсовой устойчивости. ТИ.3100.25100.12069 Лада «Largus» Схемы электрических соединений автомобилей LADA Largus K4M E5. 3100.25100.12060 LADA Largus снятие – установка основных оригинальных узлов. ТИ.3100.25100.20538 LADA Largus CNG снятие – установка основных оригинальных узлов. ТИ.3100.25100.20613 Lada Niva «Travel» Сборник схем отдельных функций LADA NIVA Travel Classic Схемы отдельных функций LADA NIVA Travel Classic Схемы электрических соединений автомобилей LADA (4×4, Samara, Kalina, Priora). Альбом электрических схемы автомобилей ВАЗ за 2011 г (Системы E‑GAS) ВАЗ 2115. Оригинальные узлы. Технология технического обслуживания и ремонта. Тольятти, АО АВТОВАЗ, 1997 г. Принципиальная электрическая схема ЭБУ М73. Принципиальная электрическая схема ЭБУ Январь 7.2. Монтажная схема ЭБУ Январь 7.2. Принципиальная электрическая схема ЭБУ VS5.1 (Старая аппаратная модификация). Принципиальная электрическая схема ЭБУ VS5.1 (Новая аппаратная модификация). Принципиальная электрическая схема  ЭБУ: Январь 4   Январь 4.1 Принципиальная электрическая схема ЭБУ Январь 5.1:     Вариант 1    Вариант 2   Вариант 3 Инструкция пользователя на иммобилизатор АПС‑6. Инструкция пользователя на иммобилизатор АПС‑4. Новая версия. Бортовая система контроля БСК-10. Описание, схема, прошивка контроллера. Кондиционер на ВАЗ – Инструкция по установке. Таблицы для замены блока BOSCH MP7.0 на Январь 5.1 и 5.1.1 Замена блока Bosсh MP 7.0 на Bosch M1.5.4 (M1V13S64, широкополосный ДД) или Январь‑5.1. Перечень систем распределенного впрыска топлива для автомобилей ВАЗ Комплектация ЭБУ ВАЗ (1,5 л.) – Жгуты, датчики, исполнительные механизмы. Основные параметры систем впрыска Диагностический коннектор OBD‑2, назначение контактов и расшифровка кодов неисправностей. Диагностика СУД – учебный курс для начинающих.

Т.к. у меня GM-вский инжектор, скопирую сюда для удобства эту статью, может кому еще пригодится.

УСТРОЙСТВО, РАБОТА И МЕТОДЫ ДИАГНОСТИКИ.

В данной инструкции приведены устройство, принципы работы и методы диагностики, систем распределенного впрыска топлива, автомобиля ВАЗ. 21093-20 – финской сборки с 1996-1998г Eurosamara 1500 Li.
Предупреждения

Измерения напряжения следует производить с помощью вольтметра с номинальным внутренним сопротивлением 10мОм

ЭЛЕМЕНТЫ СИСТЕМ ВПРЫСКА и их сокрашонное обозначения.

ЭСУД- электронная система управления двигателем;
СУПБ- система улавливания паров бензина;
ЭБН- электра бензонасос;
МЗ- модуль зажигания;
СЗ- свеча зажигания;
РХХ- регулятор холостого хода;
ДПКВ- датчик положения коленчатого вала;
ДС- датчик скорости;
ДТОЖ- датчик температуры охлаждающей жидкости;
ДМРВ- датчик массового расхода воздуха;
ДД- датчик детонации;
ДК-датчик кислорода;
ДПДЗ- датчик положения дроссельной заслонки;
ДФ- датчик фаз;
АПС- автомобильная противоугонная система;
ИМ- исполнительные механизмы;
ПЭВМ- персональная электронно-вычислительная машина;
РБН- реле электра бензонасоса,
ЭБУ- электронный блок управления;
РДВ- регулятор дополнительного воздуха (регулятор холостого хода);
КПП- коробка переключения передач;
ИСС- индикатор состояния системы;
АЦП- аналого-цифровой преобразователь,
ТО-техническое обслуживание;
O2-кислород,
ОГ- отработавшие газы.

Фото в бортжурнале LADA 21093i

СИСТЕМА ПОДАЧИ ТОПЛИВА и СИСТЕМА УЛАВЛИВАНИЯ ПАРОВ БЕНЗИНА (СУПБ) 1 — топливная форсунка (дет. 2111-1132010), 2 – залатник проверки довления топлива в системе 3 — топливная рампа (дет. 2111-1144010 или 2112-1144010); 4 -кранштейн топливной магистрали 5 — регулятор давления топлива (дет. 2112-1160010); 19 — устоновка электро бензанасоса 17 — топливный фильтр (дет. 2112-1117010). 20 — обратка 21 — подача топлива

Система подачи топлива включает в себя электра бензонасос, топливный фильтр, топлива проводы, топливную рампу с четырьмя форсунками и регулятором давления топлива.

Адсорбер крепится на кронштейне: в автомобилях семейства ВАЗ-2109 на шпильках крепления верхней опоры левой телескопической стойки.

При создании в топливном баке избыточного давления паров топлива, пары из топливного бака 1, рис 6, поступают по паропроводу 3 в адсорбер 5, где удерживаются активированным углем до включения режима продувки адсорбера. Управление продувкой осуществляет контроллер при помощи электромагнитного клапана 7. Контроллер регулирует степень продувки адсорбера в зависимости от режима работы двигателя, подавая на клапан сигнал с изменяемым периодом следования импульса.

При включении продувки адсорбера, пары бензина по шлангу 8 через штуцер агрегата 9 дроссельной заслонки поступают во впускную трубу для приготовления горючей смеси.

Контроллер включает электромагнитный клапан продувки при следующих условиях:

— температура охлаждающей жидкости выше определенного значения (выше 75 °С);
— система управления топливоподачей работает в режиме обратной связи по датчику кислорода;
— двигатель работает не в режиме отключения топливоподачи;
— система топливоподачи исправна;
— скорость автомобиля выше 10 км/час (только для контроллера GM).
Электра бензонасос турбинного типа, погруженной, устанавливается в топливном баке. Напряжение питания 12 В подается на насос через реле электра бензонасоса, управляемое контроллером.
Технические характеристики: электра бензонасоса- Напряжение: 12 В.- Максимальное давление топлива на выходе: 450-750 кПа- Номинальное противодавление: 350 кПа.- Масса: не более 0,3 кг.- Рабочая среда: автомобильный бензин.- Потребляемый ток: не более 5 А.

Форсунка (каждая из четырех) установлена одним концом в топливной рампе, другим в отверстии впускной трубы, герметичность соединений обеспечивается с помощью уплотнительных колец.
Форсунка представляет собой устройство с электромагнитным клапаном, которое при получении электрического импульса с контроллера впрыскивает топливо под давлением во впускной коллектор. По истечении электрического импульса форсунка перекрывает подачу топлива. Номинальное сопротивление обмотки форсунки от 11,0 до 13,4 Ом, при 20 °С.
Проверка исправности форсунки на стенде. Подаем промывочную жидкость под давлением — 3 кг/см2, в течении 30 секунд. И за это время замера, в емкость для замера должно попасть примерно 52 мл промывочной жидкости.При отключении питания на форсунку под давлением жидкость не должна течьс сопла.

Регулятор давления топлива установлен на топливной рампе. Регулятор представляет собой мембранный предохранительный клапан. На диафрагму регулятора с одной стороны действует давление топлива, а с другой — давление пружины регулятора и давление (разрежение) во впускной трубе. Регулятор поддерживает постоянный перепад давления (по отношению к давлению во впускной трубе) на форсунках. При увеличении нагрузки на двигатель (при росте давления во впускном трубопроводе) регулятор увеличивает давление топлива в топливной рампе, при уменьшении нагрузки — регулятор уменьшает давление топлива. Детальная работа регулятора давления описана ниже.
При падении давления в топливной рампе пружина регулятора давления прижимает диафрагму и клапан к седлу клапана, в результате чего слив топлива в бензобак прекращается и создаются условия для нарастания давления на входе. Когда давление топлива превысит усилие пружины регулятора давления, клапан открывается для сброса избытка топлива в линию слива. При включенном зажигании, неработающем двигателе и работающем электра бензонасосе регулятор поддерживает давление в топливной рампе в пределах от 280 до 320 кПа (от 2,8 до 3,2 кгс/см2).

Модуль зажигания
Система зажигания состоит из модуля зажигания, четырех свечей и высоковольтных проводов.
устанавливается для автомобилей с 8-ми клапанным двигателем на кронштейне, закрепленном на блоке цилиндров, для автомобилей с 16-ти клапанным двигателем — на крышке головки блока. Модуль зажигания представляет собой две катушки зажигания и подключенные к ним два силовых транзистора. Каждая катушка генерирует высоковольтные импульсы на соответствующую пару свечей зажигания (1/4 или 2/3 цилиндров).

Высоковольтные провода. Сопротивление каждого отдельного высоковольтного провода не должно превышать 15000 ОМ.

Фото в бортжурнале LADA 21093i

Регулятор холостого хода установлен на корпусе дроссельного патрубка. Регулятор состоит из двухполюсного шагового двигателя с двумя обмотками и соединенного с ним конусного штока клапана. Конусная часть штока регулятора холостого хода располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует

Фото в бортжурнале LADA 21093i

Датчик положения дроссельной заслонки (ДПДЗ). Установлен на оси дроссельной заслонки и представляет собой потенциометр. К ДПДЗ на один вывод подходит стабилизированное напряжение +5 В, а другой соединен с

Датчик положения коленчатого вала, , (электромагнитного типа) устанавливается на приливе корпуса масляного насоса на расстоянии (1 ± 0,4) мм от вершины зубцов шкива коленчатого вала. Шкив коленчатого вала имеет 58 зубцов расположенных по окружности. Зубцы равноудалены и расположены через 6°. Для генерирования «импульса синхронизации» два зуба на шкиве отсутствуют. При вращении коленчатого вала зубцы диска изменяют магнитное поле датчика, создавая наведенные импульсы напряжения.
По импульсу синхронизации от датчика положения коленчатого вала, контроллер определяет положение и частоту вращения коленчатого вала и рассчитывает момент срабатывания форсунок и модуля зажигания.

Датчик скорости автомобиля
Датчик скорости автомобиля. Установлен на коробке передач на приводе спидометра. Принцип его действия основан на эффекте Холла. Контроллер посылает на датчик скорости опорное напряжение 12В. Датчик выдает на контроллер прямоугольные импульсы напряжения (нижний уровень -не более 1 В, верхний — не менее 5 В) с частотой, пропорциональной скорости вращения ведущих колес. 6 импульсов датчика соответствуют 1 м пути автомобиля. Контроллер определяет скорость автомобиля по частоте импульсов.
Датчик скорости выдает на контроллер импульсный сигнал, частота которого зависит от скорости движения автомобиля. Датчик скорости участвует в управлении работой системы впрыска. ДС может иметь круглую соединительную колодку (дет. 2112-3847010) или квадратную (дет. 2110-3847010).

Датчик температуры охлаждающей жидкости
Высокая температура охлаждающей жидкости вызывает низкое сопротивление
(70 Ом + 2% при 130 °С), а низкая температура дает высокое сопротивление
(100700 Ом ± 2% при -40 °С).

Фото в бортжурнале LADA 21093i

Датчики фирмы «GM» Выходной сигнал некоторых ДМРВ производства GM представляет собой переменное напряжение с изменяющейся частотой. При большом массовом расходе воздуха датчик генерирует выходной сигнал высокой частоты, при малом расходе воздуха – сигнал низкой частоты. Выходной сигнал ДМРВ разного диаметра: для ДМРВ ф. GM диаметр отверстия 86 мм, представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 0 до 5V, значение которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе воздуха (двигатель остановлен)выходное напряжение датчика должно быть равным 0,98~1,02V. В противном случае датчик считают неисправным. С увеличением расхода воздуха выходное напряжение датчика увеличивается. Датчик способен регистрировать и обратные потоки воздуха от впускного коллектора к воздушному фильтру. Выходное его напряжение в таком случае снижается ниже значения 1V пропорционально величине обратного потока воздуха. Встречаются такие неисправности датчиков массового расхода воздуха: отсутствие изменений выходного сигнала в ответ на изменения расхода воздуха;отклонение значения выходного сигнала; снижение скорости реакции датчика. В случае снижения скорости реакции ДМРВ двигатель в значительной степени теряет

Датчик детонации, (частотный)
При исправном состоянии всей цепи на выходе датчика действует постоянное напряжение +2,5 В, получаемое в результате работы делителя из резисторов R1 и R2. Сигнал детонации изменяется в обе стороны от этого уровня (в диапазоне 0 – 5В). Пьеза элемент не пропускает постоянного тока, поэтому диагностика цепи датчика затруднена. В случае обрыва в цепи датчика напряжение на входе в ЭБУ становится равным +5 В, а в случае короткого замыкания равно нулю. ЭБУ диагностирует состояние этой цепи до пуска двигателя при включении зажигания. Резонансная частота его характеристики совпадает с частотой детонации двигателя. ДД определяет даже очень слабую детонацию. Во время возникновения детонации в двигателе датчик генерирует сигнал переменного тока с частотой и амплитудой зависящей от уровня детонации. Контроллер подает на ДД опорное напряжение 5 В. Резистор, расположенный внутри датчика, понижает напряжение до 2,5 В. Сопротивление резистора от 330 до 450 Ом. Во время нормальной (без детонации) работы двигателя напряжение на выходе датчика остается постоянным на уровне 2,5 В. При появлении детонации ДД генерирует сигнал переменного тока, который поступает в контроллер по той же цепи, по которой подается опорный сигнал 5 В. Это возможно потому, что опорный сигнал 5 В является напряжением постоянного тока, а обратный сигнал детонации — напряжением переменного тока. Амплитуда и частота сигнала переменного тока ДД зависят от уровня детонации. Контроллер считывает этот сигнал и корректирует угол опережения зажигания для гашения детонации При возникновении детонации датчик генерирует сигнал напряжения переменного тока, который поступает в ЭБУ. ЭБУ обрабатывает этот сигнал и корректирует угол опережения зажигания для гашения обнаруженной детонации. При обрыве провода, соединяющего датчик детонации с ЭБУ, или при замыкании провода на «массу» или источник питания ЭБУ заносит в свою память код неисправности и включает лампу«Check Engine», сигнализируя о неполадке, и переходит на аварийный режим работы с безопасными углами опережения зажигания. В случае обнаружения неисправности ЭБУ существенно (на 10 – 15 °C) снижает углы опережения зажигания на большинстве режимов работы двигателя для гарантированного недопущения детонации.Мощность и экономичность падает. Характеристики автомобиля при этом ухудшаются, но заметно снижается риск повреждения двигателя.

Фото в бортжурнале LADA 21093i

ДАТЧИК КИСЛОРОДА (ДК) Получается, что изночально нам подходит GM AFS — 79 и LHS 24 занимаюсь подготовкой ДК BOSСH к внедрению Ввиду того, что GM -оводов не так много, — внесу ясность скорее для себя, относительно распиновки. AFS79 -это и есть ДК GM Ранее приведенная схема не совсем понятна в том что, никто под машиной не будет рассматривать цвета кододки Дк от косы мозгов. Сведу просто соответствие колодок обоих датчиков. 2 коричневые (AFS79) = 2 белые (БОШ) — подогрев (полярность значения не имеет) фиолетовый (AFS79) = черный (БОШ) — сигнальный светлобежевый (AFS79) = серый (БОШ) — масса датчика. Контролируются следующие параметры: 1. при значении Лямбда=0,9 (обогащенная горючая смесь) напряжение на сигнальном проводе должно быть не менее 0,65 В; 2. при значении лямбда=1,1 (обедненная горючая смесь) напряжение на сигнальном выводе должно быть не более 0,25 В; 3. время срабатывания при обедненной горючей смеси — не более 250 мс; 4. время срабатывания при обогащенной горючей смеси — не более 450 мс; 5. сопротивление при температуре 350 + 50

СИСТЕМА НЕЙТРАЛИЗАЦИИ ОТРАБОТАВШИХ ГАЗОВ
Нейтрализатор устанавливается в системе выпуска отработавших газов между приемной трубой и дополнительным глушителем. Применение каталитического нейтрализатора дает значительное снижение выбросов углеводородов, окиси углерода и окислов азота с отработавшими газами при условии точного управления процессом сгорания в двигателе. Наиболее полное сгорание топливовоздушной смеси и максимальная эффективная нейтрализация вышеупомянутых токсичных компонентов отработавших газов обеспечиваются при отношении воздуха к топливу 14,6…14,7 к 1, т.е. 14,6…14.7 кг воздуха на 1 кг топлива. При эксплуатации неисправного двигателя нейтрализатор может выйти из строя из-за тепловых напряжений, которым он подвергается при окислении избыточных количеств углеводородов. Другой возможной причиной выхода из строя нейтрализатора является применение этилированного бензина. Содержащийся в нем тетраэтилсвинец за короткое время выводит из строя датчик кислорода и нейтрализатор. При тепловых напряжениях керамические блоки нейтрализатора могут разрушиться (закупориться), вызвав повышение противодавления. На работающем двигателе (при 2500 об/мин) величина противодавления должна составлять не более 8,62 кПа (измеряется с помощью манометра устанавливаемого в отверстие вместо датчика концентрации кислорода).

Самодиагностика системы впрыска топлива GM и идентификация ее кодов неисправностей.
На панели приборов автомобилей, оборудованных данной системой впрыска топлива, установлена лампа индикации неисправностей «CHECK ENGINE». Она загорается при наличии каких-либо ошибок в работе системы впрыска и указывает на необходимость проведения диагностики и устранения неисправности. В памяти эл.блока управления запоминается двухразрядный код ошибки ( 12-99 ), который индицируется этой лампой при инициализации режима вывода кодов самодиагностики.
Стирание кодов ошибок в памяти EСМ происходит при отключении питания. Если Вам нужно их стереть, необходимо при выключенном зажигании отключить плюсовую клемму аккумулятора на 10-15 сек. Соответственно самодиагностику нужно проводить не менее чем через 10-20 мин. эксплуатации автомобиля (лучше на разных нагрузках), после последнего отключения аккумулятора.
! ВНИМАНИЕ ! При отключении аккумулятора могут быть потеряны предустановки критичных дополнительных устройств (магнитола, сигнализация и т.д.). В этом случае можно просто отключить предохранитель эл.блока, если к данной цепи не подключены критичные устройства. В противном случае можно снять разъем с самого эл.блока. Кроме того, в ЕСМ будут потеряны коды коррекции и до их восстановления (до 30 мин. эксплуатации) стоит воздержаться от динамичной езды и резких ускорений.
Для инициализации режима выдачи кодов диагностики необходимо при выключенном зажигании замкнуть между собой контакты » А » и » В » диагностического разъема или контакт » В » на корпус автомобиля и включить зажигание не запуская двигатель . Код неисправности высвечивается лампой «CHECK ENGINE » в последовательном виде — сначала старший разряд, затем (после паузы) младший.
Например:
вспышка, пауза, вспышка, вспышка будут соответствовать коду » 12 » — работоспособность самодиагностики.
При инициализации данного режима, индикатор сначала три раза подряд выдаст код » 12 » и далее трижды каждый код неисправности. Если в начале теста не выводится код » 12 «, значит неисправность в самом электронном блоке управления. Следует отметить, что прочитанные коды ошибок не всегда однозначно указывают на неисправность какого-либо датчика или элемента системы впрыска. При диагностике следует сопоставлять данные ECM, конструктивную реакцию датчиков и конкретное поведение двигателя на холостом ходу и под нагрузкой.
Полная информация и коды ошибок на сайте: sites.google.com/site/ustrojstvovaz2109/

На автомобилях ВАЗ–2110, ВАЗ–2111 и ВАЗ–2112 в вариантном исполнении применяется электронная система управления двигателем, т.е. система распределенного впрыска топлива. Эта система применяется на двигателях 2111 и 2112. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля.

Существуют системы распределенного впрыска с обратной связью и без нее. Причем обе системы могут быть с импортными комплектующими или отечественными. Контроллеры (электронные блоки управления) тоже могут устанавливаться разных типов. Все эти системы имеют свои особенности в устройстве, диагностике и в ремонте, которые подробно описаны в соответствующих отдельных Руководствах по ремонту конкретных систем впрыска топлива с определенным контроллером.

В настоящей главе дается только краткое описание общих принципов устройства, работы и диагностики систем впрыска топлива на примере системы с контроллером «Январь–4».

Система с обратной связью применяется, в основном, на экспортных автомобилях. У нее в системе выпуска устанавливается нейтрализатор и датчик кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а контроллер по его сигналам поддерживает такое соотношение воздух/топливо, которое обеспечивает наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной связи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяется также система улавливания паров бензина. Возможен вариант системы впрыска и без СО-потенциометра, тогда содержание СО регулируется с помощью диагностического прибора.

Существует еще система последовательного распределенного впрыска топлива или фазированного впрыска. Она применяется с двигателем 2112. Здесь дополнительно устанавливается датчик фаз, определяющий момент конца такта сжатия в 1-м цилиндре, а топливо подается форсунками по цилиндрам в последовательности, соответствующей порядку зажигания в цилиндрах (1–3–4–2).

ПРЕДУПРЕЖДЕНИЯ

1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Не пускайте двигатель, если наконечники проводов на аккумуляторной батарее плохо затянуты.

3. Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.

4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети автомобиля.

5. Не подвергайте контроллер температуре выше 65 С в рабочем состоянии и выше 80 С в нерабочем (например, в сушильной камере). Надо снимать контроллер с автомобиля, если эта температура будет превышена.

6. Не отсоединяйте от контроллера и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.

7. Перед выполнением электродуговой сварки на автомобиле, отсоединяйте провода от аккумуляторной батареи и разъемы проводов от контроллера.

8. Все измерения напряжения выполняйте цифровым вольтметром с внутренним сопротивлением не менее 10 МОм.

9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому легко могут быть повреждены электростатическим разрядом. Чтобы не допустить повреждений контроллера электростатическим разрядом:

– не прикасайтесь руками к штекерам контроллера или к электронным компонентам на его платах;

– при работе с ППЗУ контроллера не дотрагивайтесь до выводов микросхемы.

Устройство и работа

Нейтрализатор

Токсичными компонентами отработавших газов являются углеводороды (несгоревшее топливо), окись углерода и окись азота. Для преобразования этих соединений в нетоксичные служит трехкомпонентный каталитический нейтрализатор, установленный в системе выпуска сразу за приемной трубой глушителей. Нейтрализатор применяется только в системе впрыска топлива с обратной связью.

Рис. 9–21. Нейтрализатор: 1 – керамический блок с катализаторами

В нейтрализаторе (рис. 9–21) находятся керамические элементы с микроканалами, на поверхности которых нанесены катализаторы: два окислительных и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода – в безвредную двуокись углерода. Восстановительный катализатор (родий) ускоряет химическую реакцию восстановления оксидов азота и превращения их в безвредный азот.

Для эффективной нейтрализации токсичных компонентов и наиболее полного сгорания воздушно-топливной смеси необходимо, чтобы на 14,6–14,7 частей воздуха приходилась 1 часть топлива.

Такая точность дозирования обеспечивается электронной системой впрыска топлива, которая непрерывно корректирует подачу топлива в зависимости от условий работы двигателя и сигнала от датчика концентрации кислорода в отработавших газах.

ПРЕДУПРЕЖДЕНИЕ

Не допускается работа двигателя с нейтрализатором на этилированном бензине. Это приведет к быстрому выходу из строя нейтрализатора и датчика концентрации кислорода.

Контроллер

Рис. 9–22. Схема системы впрыска топлива: 1 – воздушный фильтр; 2 – датчик массового расхода воздуха; 3 – шланг впускной трубы; 4 – шланг подвода охлаждающей жидкости; 5 – дроссельный патрубок; 6 – регулятор холостого хода; 7 – датчик положения дроссельной заслонки; 8 – канал подогрева системы холостого хода; 9 – ресивер; 10 – шланг регулятора давления; 11 – контроллер; 12 – реле включения электробензонасоса; 13 – топливный фильтр; 14 – топливный бак; 15 – электробензонасос с датчиком уровня топлива; 16 – сливная магистраль; 17 – подающая магистраль; 18 – регулятор давления;

19 – впускная труба; 20 – рампа форсунок; 21 – форсунка; 22 – датчик скорости; 23 – датчик концентрации кислорода; 24 – газоприемник приемной трубы глушителей; 25 – коробка передач; 26 – головка цилиндров; 27 – выпускной патрубок системы охлаждения; 28 – датчик температуры охлаждающей жидкости; А – к подводящей трубе насоса охлаждающей жидкости

Контроллер 11 (рис. 9–22) (электронный блок управления), расположенный под консолью панели приборов, является управляющим центром системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.

В контроллер поступает следующая информация:

– о положении и частоте вращения коленчатого вала;

– о массовом расходе воздуха двигателем;

– о температуре охлаждающей жидкости;

– о положении дроссельной заслонки;

– о содержании кислорода в отработавших газах (в системе с обратной связью);

– о наличии детонации в двигателе;

– о напряжении в бортовой сети автомобиля;

– о скорости автомобиля;

– о положении распределительного вала (в системе с последовательным распределенным впрыском топлива);

– о запросе на включение кондиционера (если он установлен на автомобиле).

На основе полученной информации контроллер управляет следующими системами и приборами:

– топливоподачей (форсунками и электробензонасосом);

– системой зажигания;

– регулятором холостого хода;

– адсорбером системы улавливания паров бензина (если эта система есть на автомобиле);

– вентилятором системы охлаждения двигателя;

– муфтой компрессора кондиционера (если он есть на автомобиле);

– системой диагностики.

Контроллер включает выходные цепи (форсунки, различные реле и т.д.) путем замыкания их на массу через выходные транзисторы контроллера. Единственное исключение – цепь реле топливного насоса. Только на обмотку этого реле контроллер подает напряжение +12 В.

Контроллер имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Память. В контроллере имеется три вида памяти: оперативное запоминающее устройство (ОЗУ), однократно программируемое постоянное запоминающее устройство (ППЗУ) и электрически программируемое запоминающее устройство (ЭПЗУ).

Оперативное запоминающее устройство – это «блокнот» контроллера. Микропроцессор контроллера использует его для временного хранения измеряемых параметров для расчетов и для промежуточной информации. Микропроцессор может по мере необходимости вносить в него данные или считывать их.

Микросхема ОЗУ смонтирована на печатной плате контроллера. Эта память является энергозависимой и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются.

Программируемое постоянное запоминающее устройство. В ППЗУ находится общая программа, в которой содержится последовательность рабочих команд (алгоритмы управления) и различная калибровочная информация. Эта информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т.п., которые зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. ППЗУ называют еще запоминающим устройством калибровок.

Рис. 9–23. Контроллер: 1 –  программируемое постоянное запоминающее устройство (ППЗУ)

Содержимое ППЗУ не может быть изменено после программирования. Эта память не нуждается в питании для сохранения записанной в ней информации, которая не стирается при отключении питания, т.е. эта память является энергонезависимой. ППЗУ устанавливается в панельке на плате контроллера (рис. 9–23) и может выниматься из контроллера и заменяться.

ППЗУ индивидуально для каждой комплектации автомобиля, хотя на разных моделях автомобилей может быть применен один и тот же унифицированный контроллер. Поэтому при замене ППЗУ важно установить правильный номер модели и комплектации автомобиля. А при замене дефектного контроллера необходимо оставлять прежнее ППЗУ (если оно исправно).

Электрически программируемое запоминающее устройство используется для временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые контроллером от блока управления иммобилизатором (если он имеется на автомобиле), сравниваются с хранимыми в ЭПЗУ и при этом разрешается или запрещается пуск двигателя. Эта память является энергонезависимой и может храниться без подачи питания на контроллер.

Датчики

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (при –40 оС – 100 кОм), а при высокой температуре – низкое (при 100 оС – 177 Ом).

Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике. Падение напряжения высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет контроллер.

Рис. 9–24. Расположение датчика детонации на двигателе: 1 – датчик детонации

Датчик детонации заворачивается в верхнюю часть блока цилиндров (рис. 9–24)  и улавливает аномальные вибрации (детонационные удары) в двигателе.

Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. Контроллер по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.

Датчик концентрации кислорода применяется в системе впрыска с обратной связью и устанавливается на приемной трубе глушителей. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода – бедная смесь) до 0,9 В (мало кислорода – богатая смесь).

Для нормальной работы датчик должен иметь температуру не ниже 360 оС. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен нагревательный элемент.

Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) – дается команда на обеднение смеси.

Датчик массового расхода воздуха расположен между воздушным фильтром и шлангом впускной трубы. В нем находятся температурные датчики и нагревательный резистор. Проходящий воздух охлаждает один из датчиков, а электронный модуль датчика преобразует эту разность температур датчиков в выходной сигнал для контроллера.

В разных вариантах систем впрыска топлива могут применяться датчики массового расхода воздуха двух типов. Они отличаются по устройству и по характеру выдаваемого сигнала, который может быть частотным или аналоговым. В первом случае в зависимости от расхода воздуха меняется частота сигнала, а во втором случае – напряжение.

Контроллер использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.

Рис. 9–25. СО-потенциометр

СО-потенциометр (рис. 9–25) установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в контроллер сигнал, который используется для регулировки состава топливо-воздушной смеси с целью получения нормированного уровня концентрации окиси углерода (СО) в отработавших газах на холостом ходу. СО-потенциометр подобен винту качества смеси в карбюраторах. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания с применением газоанализатора.

Датчик скорости автомобиля устанавливается на коробке передач между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на контроллер прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Датчик положения дроссельной заслонки установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.

Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к контроллеру.

Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 0,7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В.

Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя).

Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.

Датчик положения коленчатого вала – индуктивного типа, предназначен для синхронизации работы контроллера с верхней мертвой точкой поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.

Рис. 9–26. Осциллограмма импульсов напряжения датчика положения коленчатого вала:

а – угловые импульсы; б – опорный импульс

Датчик установлен на крышке масляного насоса напротив задающего диска на шкиве привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленными (6о) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса «в» (рис. 9–26) синхронизации («Опорного» импульса), который необходим для согласования работы контроллера с ВМТ поршней в 1-ом и 4-ом цилиндрах.

При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1±0,2) мм.

Контроллер по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.

Датчик фаз применяется в системе с последовательным впрыском топлива и устанавливается с левой передней стороны головки цилиндров. Принцип его действия основан на эффекте Холла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распределительного вала. Когда прорезь диска проходит через паз датчика фаз, он выдает на контроллер отрицательный импульс, соответствующий положению поршня 1-го цилиндра в ВМТ в конце такта сжатия.

Сигнал запроса на включение кондиционера. Если на автомобиле установлен кондиционер, то сигнал поступает от выключателя кондиционера на панели приборов. В данном случае контроллер получает информацию о том, что водитель желает включить кондиционер.

Получив такой сигнал, контроллер сначала подстраивает  регулятор холостого хода, чтобы компенсировать дополнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.

Система питания

Воздушный фильтр установлен в передней части моторного отсека на резиновых фиксаторах. Фильтрующий элемент – бумажный, с большой площадью фильтрующей поверхности. При замене фильтрующего элемента его необходимо устанавливать так, чтобы гофры были расположены параллельно осевой линии автомобиля.

Рис. 9–27. Дроссельный патрубок: 1 – патрубок подвода охлаждающей жидкости; 2 – патрубок системы вентиляции картера на холостом ходу;

3 – патрубок для отвода охлаждающей жидкости; 4 – датчик положения дроссельной заслонки;

5 – регулятор холостого хода; 6 – штуцер для продувки адсорбера; 7 – заглушка

Дроссельный патрубок (рис. 9–27) закреплен на ресивере. Он дозирует количество воздуха, поступающего во впускную трубу. Поступлением воздуха в двигатель управляет дроссельная заслонка, соединенная с приводом педали акселератора.

В состав дроссельного патрубка входят датчик 4 положения дроссельной заслонки и регулятор 5 холостого хода. В проточной части дроссельного патрубка (перед дроссельной заслонкой и за ней) находятся отверстия отбора разрежения, необходимые для работы системы вентиляции картера и адсорбера системы улавливания паров бензина. Если последняя система не применяется, то штуцер для продувки адсорбера глушится резиновой заглушкой 7.

Регулятор 5 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам контроллера.

Когда игла регулятора полностью выдвинута (что соответствует 0 шагов), клапан полностью перекрывает проход воздуха. Когда игла вдвигается, то обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.

Рис. 9–28. Система подачи топлива: 1 – пробка штуцера для контроля давления топлива; 2 – рампа форсунок; 3 – скоба крепления топливных трубок; 4 – регулятор давления топлива; 5 – электробензонасос; 6 – топливный фильтр; 7 – сливной топливопровод; 8 – подающий топливопровод; 9 – форсунки

Система подачи топлива включает в себя электробензонасос 5 (рис. 9–28), топливный фильтр 6, топливопроводы и рампу 2 форсунок в сборе с форсунками 9 и регулятором 4 давления топлива.

Электробензонасос – двухступенчатый, роторного типа, неразборный, установлен в топливном баке. Он обеспечивает подачу топлива под давлением более 284 кПа.

Электробензонасос расположен непосредственно в топливном баке, что снижает возможность образования паровых пробок, т.к. топливо подается под давлением, а не под действием разрежения.

Топливный фильтр встроен в подающую магистраль между электробензонасосом и рампой форсунок, и установлен под полом кузова за топливным баком. Фильтр – неразборный, имеет стальной корпус с бумажным фильтрующим элементом.

Рампа 2 форсунок представляет собой полую планку с установленными на ней форсунками и регулятором давления топлива. Рампа форсунок закреплена двумя болтами на впускной трубе. С левой стороны (на рисунке) на рампе форсунок находится штуцер для контроля давления топлива, закрытый резьбовой пробкой 1.

Форсунки 9 крепятся к рампе, от которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях рампы и впускной трубы форсунки уплотняются резиновыми уплотнительными кольцами.

Форсунка представляет собой электромагнитный клапан. Когда на нее от контроллера поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струей под давлением впрыскивается во впускную трубу на впускной клапан. Здесь топливо испаряется, соприкасаясь с нагретыми деталями, и в парообразном состоянии попадает в камеру сгорания. После прекращения подачи электрического импульса подпружиненный клапан форсунки перекрывает подачу топлива.

Регулятор 4 давления топлива установлен на рампе форсунок и предназначен для поддержания постоянного перепада давления между давлением воздуха во впускной трубе и давлением топлива в рампе.

Рис. 9–29. Регулятор давления топлива:

1 – корпус; 2 – крышка; 3 – патрубок для вакуумного шланга; 4 – диафрагма; 5 – клапан; А – топливная полость; Б – вакуумная полость

Регулятор состоит из клапана 5 (рис. 9–29) с диафрагмой 4, поджатого пружиной к седлу в корпусе регулятора. На работающем двигателе регулятор поддерживает давление в рампе форсунок в пределах 284–325 кПа.

На диафрагму регулятора с одной стороны действует давление топлива, а с другой – давление (разрежение) во впускной трубе.  При уменьшении давления во впускной трубе (дроссельная заслонка закрывается) клапан регулятора открывается при меньшем давлении топлива, перепуская избыточное топливо по сливной магистрали обратно в бак. Давление топлива в рампе понижается. При увеличении давления во впускной трубе (при открывании дроссельной заслонки) клапан регулятора открывается уже при большем давлении топлива и давление топлива в рампе повышается.

Система зажигания

Рис. 9–30. Схема системы зажигания: 1 – аккумуляторная батарея; 2 – выключатель зажигания;

3 – реле зажигания; 4 – свечи зажигания; 5 – модуль зажигания; 6 – контроллер; 7 – датчик положения коленчатого вала; 8 – задающий диск;

А – устройства согласования

В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль 5 (рис. 9–30) зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т.к. управление зажиганием осуществляет контроллер.

В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1–4 и 2–3 и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра), и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй – с бокового на центральный. Свечи применяются типа А17ДВРМ (для 8-клапанных двигателей) или АУ17ДВРМ (для 16-клапанных двигателей, с уменьшенным до 16 мм размером под ключ). Зазор между электродами свечей составляет 1,0–1,15 мм.

Управление зажиганием в системе осуществляется с помощью контроллера. Датчик положения коленчатого вала подает в контроллер опорный сигнал, на основе которого контроллер делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием контроллер использует следующую информацию:

– частота вращения коленчатого вала;

– нагрузка двигателя (массовый расход воздуха);

– температура охлаждающей жидкости;

– положение коленчатого вала;

– наличие детонации.

Система улавливания паров  бензина

Эта система применяется в системе впрыска с обратной связью. В системе применен метод улавливания паров угольным адсорбером.  Он установлен в моторном отсеке и соединен трубопроводами с топливным баком и дроссельным патрубком. На крышке адсорбера расположен электромагнитный клапан, который по сигналам контроллера переключает режимы работы системы.

Когда двигатель не работает, электромагнитный клапан закрыт и пары бензина из топливного бака по трубопроводу идут к адсорберу, где они поглощаются гранулированным активированным углем. При работающем двигателе адсорбер продувается воздухом и пары отсасываются к дроссельному патрубку, а затем во впускную трубу для сжигания в ходе рабочего процесса.

Контроллер управляет продувкой адсорбера, включая электромагнитный клапан, расположенный на крышке адсорбера. При подаче на клапан напряжения, он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

Контроллер включает клапан продувки адсорбера при выполнении всех следующих условий:

– температура охлаждающей жидкости выше 75 оС;

– система управления топливоподачей работает в режиме замкнутого цикла (с обратной связью);

– скорость автомобиля превышает 10 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 7 км/ч;

– открытие дроссельной заслонки превышает 4%. Этот фактор в дальнейшем не играет значения, если он не превышает 99%. При полном открытии дроссельной заслонки контроллер отключает клапан продувки адсорбера.

Работа системы впрыска

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от контроллера (электронного блока управления). Контроллер отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива – сокращается.

Контроллер обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение»  контроллера является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Топливо подается по одному из двух разных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива – преимущественно применяемый метод. Асинхронный впрыск топлива применяется, в основном, на режиме пуска двигателя.

Форсунки включаются попарно и поочередно: сначала форсунки 1 и 4 цилиндров, а через 180о поворота коленчатого вала – форсунки 2 и 3 цилиндров и т.д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т.е. два раза за полный рабочий цикл двигателя.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются контроллером и описаны ниже.

Первоначальный впрыск топлива.

Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от контроллера на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается, для увеличения количества топлива, а на прогретом – длительность импульса уменьшается. После первоначального впрыска контроллер переключается на соответствующий режим управления форсунками.

Режим пуска двигателя.

При включении зажигания контроллер включает реле электробензонасоса, и он создает давление в магистрали подачи топлива к топливной рампе. Контроллер проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала контроллер работает в пусковом режиме, пока обороты не превысят 400 об/мин или не наступит режим продувки «залитого» двигателя.

Режим продувки двигателя.

Если двигатель «залит топливом» (т.е. топливо намочило свечи зажигания), он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом контроллер не подает импульсы впрыска на форсунки, и двигатель должен «очиститься». Контроллер поддерживает этот режим до тех пор, пока обороты двигателя ниже 400 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).

Если дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запустится, т.к. при полностью открытой дроссельной заслонке импульсы впрыска на форсунку не подаются.

Рабочий режим управления топливоподачей.

После пуска двигателя (когда обороты более 400 об/мин) контроллер управляет системой подачи топлива в рабочем режиме. На этом режиме контроллер рассчитывает длительность импульса на форсунки по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

Рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14,7:1. Примером может служить непрогретое состояние двигателя, т.к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Рабочий режим для системы впрыска с обратной связью.

В этой системе контроллер сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в том, что в системе с обратной связью контроллер еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6–14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Работа системы с последовательным (фазированным) впрыском топлива.

Отличие этой системы от описанных выше состоит в том, что контроллер включает форсунки не попарно, а последовательно, в порядке зажигания по цилиндрам (1–3–4–2). Датчик фаз дает контроллеру сигнал о том, когда 1-й цилиндр находится в ВМТ в конце такта сжатия. На основании этого сигнала контроллер рассчитывает момент включения каждой форсунки, причем каждая форсунка впрыскивает топливо один раз за два оборота коленчатого вала двигателя, т.е. за один полный рабочий цикл. Такой метод позволяет более точно дозировать топливо по цилиндрам и понизить уровень токсичности отработавших газов.

Режим обогащения при ускорении.

Контроллер следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим мощностного обогащения.

Контроллер следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и контроллер изменяет соотношение воздух/топливо приблизительно до 12:1. В системе впрыска с обратной связью на этом режиме сигнал датчика концентрации кислорода игнорируется, т.к. он будет указывать на обогащенность смеси.

Режим обеднения при торможении.

При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиться выбросы в атмосферу токсичных компонентов. Чтобы не допустить этого, контроллер следит за уменьшением угла открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем.  

При торможении двигателем с включенной передачей и сцеплением контроллер может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания.

При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. Контроллер компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) контроллер уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива.

При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если контроллер не получает опорных импульсов от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 об/мин, для защиты двигателя от перекрутки.

Управление электровентилятором системы охлаждения.

Электровентилятор включается и выключается контроллером в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле, расположенного под консолью панели приборов с правой стороны.

При работе двигателя электровентилятор включается, если температура охлаждающей жидкости превысит 104оС, или будет дан запрос на включение кондиционера. Электровентилятор выключается после падения температуры охлаждающей жидкости ниже 101оС, после выключения кондиционера или остановки двигателя.

Диагностика

Здесь приведены только краткие сведения по диагностике системы впрыска с помощью контрольной лампы «CHECK ENGINE». Подробно диагностика с использованием специальных приборов и диагностических карт описана в отдельных Руководствах по ремонту систем распределенного впрыска топлива.

Контроллер постоянно выполняет самодиагностику по некоторым функциям управления. Языком контроллера для указания источника неисправности служат диагностические коды. Коды – это двузначные номера в диапазоне от 12 до 61. У разных контроллеров коды неисправностей могут несколько отличаться друг от друга. В таблице 9–3 представлена расшифровка кодов неисправностей контроллера типа «Январь–4» для системы распределенного впрыска топлива без обратной связи и с отечественными комплектующими.

Таблица 9–3

Коды неисправностей контроллера типа «Январь–4»

Когда неисправность обнаружена контроллером, код заносится в память и включается контрольная лампа «CHECK ENGINE». Это не означает, что двигатель должен быть немедленно остановлен, но причина включения контрольной лампы должна быть обнаружена при первой же возможности.

Лампа «CHECK ENGINE»

Лампа находится в комбинации приборов и выполняет следующие функции:

– информирует водителя о том, что имеется неисправность в системе управления двигателем и автомобиль необходимо проверить по возможности быстрее;

– выдает диагностические коды, хранящиеся в памяти контроллера, чтобы помочь специалисту найти неисправность.

При включении зажигания лампа загорается и, пока двигатель еще не работает, происходит проверка исправности лампы и систем. После пуска двигателя лампа должна гаснуть. Если лампа продолжает гореть, то система самодиагностики обнаружила неисправность. Если неисправность пропадает, то лампа гаснет обычно через 10 сек, но код неисправности будет храниться в памяти контроллера.

В случае «непостоянного» характера неисправности лампа «CHECK ENGINE» будет гореть около 10 с, а затем погаснет. Однако соответствующий код неисправности будет храниться в памяти контроллера, пока не отключится его питание. Когда в процессе считывания кодов обнаруживаются неожиданные коды, то можно предположить, что эти коды созданы непостоянной неисправностью и могут помочь в диагностике системы.

Считывание кодов

Для связи с контроллером служит колодка диагностики. Она расположена под консолью панели приборов с левой стороны.

Коды неисправностей, хранящиеся в памяти контроллера, могут быть прочитаны либо специальным диагностическим прибором, или подсчетом числа вспышек лампы «CHECК ENGINE».

Рис. 9–31. Колодка диагностики: А – контакт, соединенный с массой; В – диагностический контакт для подачи сигнала на контроллер; G – контакт управления электробензонасосом; М – контакт выдачи информации (канал последовательных данных)

Для считывания кодов лампой необходимо соединить контакт «В» (рис. 9–31) колодки диагностики с массой. Легче всего его замкнуть на массу, соединив с контактом «А», который соединен с массой двигателя.

Рис. 9–32. Выдача кода 12 контрольной лампой «CHECK ENGINE»

Когда контакты «А» и «В» будут соединены между собой, то ключ в выключателе зажигания надо повернуть в положение III (Зажигание), но двигатель работать не должен. В этих условиях лампа «CHECK ENGINE» должна вспышками высветить три раза подряд код 12. Это должно происходить в таком порядке: вспышка, пауза (1–2 сек), вспышка, вспышка – длинная пауза (2–3 сек), и еще так два раза (рис. 9–32).

Код 12 говорит о том, что работает система диагностики контроллера. Если код 12 не высвечивается, то имеются неполадки в самой системе диагностики.

После высвечивания кода 12 лампа «СHECK ENGINE» три раза высвечивает коды неисправностей, если они существуют, или просто продолжает высвечивать код 12, если кодов неисправностей нет.

Если в памяти контроллера хранится более одного кода неисправностей, то они высвечиваются каждый по 3 раза.

Внимание!

По окончании диагностики размыкать контакты «А» и «В» колодки диагностики разрешается через 10 сек после выключения зажигания.

Стирание кодов

Стирают коды из памяти контроллера или после окончания ремонта или с целью посмотреть, не возникает ли неисправность снова. Для стирания необходимо отключить питание контроллера не менее, чем на 10 сек.

Питание может быть отключено либо отсоединением провода от клеммы «минус» аккумуляторной батареи, или удалением предохранителя защиты контроллера из блока предохранителей.

ПРЕДУПРЕЖДЕНИЕ.

Чтобы не повредить контроллер, отключать и включать его питание надо только при выключенном зажигании.

Понравилась статья? Поделить с друзьями:
  • Лего пожарная станция инструкция по сборке пожарная машина
  • Инструкция для gsm сигнализации с алиэкспресс
  • Сож унизор м инструкция по применению
  • Инструкция по пож безопасности согласно новых правил
  • Руководство министерства природопользования