Xy5008 dc инструкция по применению на русском

О сайте

Правила сайта

Сайт MYSKU.club cоздан для обзоров товаров, заказанных в
зарубежных интернет-магазинах AliExpress, Amazon, Ebay и других.

Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку.

Если Вы купили что-то полезное, то, пожалуйста, поделитесь
информацией с другими.

Также у нас есть DIY сообщество, где приветствуются обзоры вещей, сделанных своими руками.

Вот я добрался и до преобразователя XYS3580 о котором неоднократно писали. Ну а почему бы и не написать, универсальный вход, мощность до 80Вт, правда как выяснилось, есть у него много «нюансов», о которых я сегодня и хочу рассказать.
Осмотр, тесты, осциллограммы и скромная попытка применения.

Вообще этот преобразователь я заказывал исключительно для обзора, так как меня о нем просили уже несколько моих постоянных читателей. Попутно просто так решил сделать если не самый маленький, то по крайней мере близкий к этому, регулируемый блок питания. Но увы, все оказалось несколько хуже, чем я планировал изначально, кроме того, из-за этого обзор будет идти скорее не в логическом, а хронологическом порядке, потому возможны некоторые «перескоки» с одной темы на другую, но перейдем к делу.

Реклама обещала симпатичный дизайн, цифровое управление, мощность до 80Вт, правда с ограничениями.

В расширенном варианте описания приведены как изображения нескольких экранов, так и более полные характеристики.
Из ключевых —
Входное напряжение: 6-36В
Выходное напряжение: 0.6-36В
Выходной ток: 0-5А
Выходная мощность: 80Вт
Максимальный входной ток: 7А
Дискретность установки напряжения: 0.01В
Дискретность установки тока: 0.001А
Точность установки напряжения: +/-0.3% +1 знак
Точность установки тока: +/-0.4% +3 знака

Упаковка крайне лаконичная, невзрачный коробок, внутри нечто замотанное в пупырку.

Кроме собственно преобразователя больше ничего нет, даже инструкции.

Формфактор корпуса стал наверное уже стандартом, в таком же корпусе идет сейчас довольно много разных устройств, генераторы, преобразователи, даже электронная нагрузка. На мой взгляд очень удобный формат, если бы не мелкий экран.

Для упрощения монтажа есть чертеж с размерами

На передней панели находится экран размером 27х27мм (1.44 дюйма), нажимной энкодер и кнопка включения. В общем-то тот минимум, необходимый для управления, меньше только если убрать отдельную кнопку, как я писал в предыдущем обзоре.

Сзади печатная плата и клемник для подключения входа и выхода. Клеммник дешевый, я считаю что можно было поставить и более качественный, при подключении учитывайте что минус входа и выхода не равнозначны и соединять их друг с другом нельзя.

За охлаждение отвечает небольшой радиатор и вентилятор 30х30х10мм. Управление вентилятором в зависимости от нагрузки и выходного тока, что конечно радует, но регулировки оборотов нет.

Так как преобразователь реализован по топологии SEPIC, то соответственно на плате два одинаковых дросселя (да, я знаю что SEPIC бывает и с одним дросселем), между ними расположен развязывающий конденсатор.
С другой стороны от радиатора пара операционных усилителей, отвечающих как за измерение тока/напряжения, так и за их установку. Здесь же находятся выходные конденсаторы, 470мкФ и 220мкФ 50В.

А вот конструкция сходу не понравилась, дело в том, что платы собраны «бутербродом» и на самом-то деле это нормально, но вот то, что удерживается верхняя плата только за счет соединяющих их разъемов, не очень так как вынимается плата совсем легко.
Рекомендую зафиксировать плату чем нибудь перед применением.

Условно платы можно разделить на силовую и управления, на силовой расположены дроссели, конденсаторы, транзисторы и пр., на плате управления соответственно микроконтроллер, дисплей, энкодер.
Силовая плата имеет двухсторонний монтаж, причем снизу также довольно много компонентов, по центру виден транзистор защиты от переполюсовки, что как мне весьма может быть полезным, но при стационарном применении лучше его закоротить.

За питание «мозгов» отвечает XL1509, насколько я понял, правее расположен транзистор управления вентилятором.
Также снизу находится и дроссель для снижения уровня пульсаций. Дело в том, что SEPIC имеет довольно высокий уровень пульсаций и подобное решение это небольшой плюс производителю. Правда дроссель могли поставить и побольше.

Микроконтроллер, отдельный стабилизатор питания, ничего интересного.

Конструкция в полностью разобранном виде, кстати в отличие от силовой платы, плата управления вынимается тяжело.

Спереди несколько стоек, дисплей, энкодер и кнопка. Кнопка нормальная, нажимается не сильно туго.
Помня о проблемах плат DPS проверил что ручка энкодера имеет изоляцию, тогда отсутствие изоляции приводило к проблемам из-за статики.

Вентилятор на 5 вольт, думаю что при необходимости найти замену не составит труда, как и подобрать более мощный.

А вот это неожиданно, мало того что радиатор прижат просто к пластиковым корпусам компонентов, так здесь еще и нет термопасты, как говорится — косяк в квадрате!

Установлен уже известный ШИМ контроллер FP5139, он был у меня в обзоре SEPIC платы. Если коротко, работает этот чип на частоте до 500кГц, что по своему помогает в уменьшении размеров дросселей, но при этом мешает в управлении силовыми транзисторами.
Кстати, транзистор B75NF75 75В, 80А, 9.5мОм. Так как частота высокая, то выход ШИМ контроллера усилен при помощи эмиттерного повторителя.
Левее находится диодная сборка B10100G, параметры понятны из маркировки — 10А 100В. Между транзистором и диодной сборкой небольшой терморезистор.

Пайка элементов красивая, а силовых элементов даже слишком красивая, ощущение что припоя пожалели.

Перед сборкой не удержался и все таки добавил термопасту на транзистор и диодную сборку, попутно проследив чтобы радиатор не перекосило при установке.

При включении отображается простенькая анимация и потом преобразователь переходит в штатный режим работы. Экрана «по умолчанию» у него нет, запоминается тот, что был перед отключением, то же самое касается и установок.

Потребление платы.
Здесь вот как-то не все так однозначно, если с неактивным выходом потребление небольшое, порядка 30мА, причем независящее от напряжения питания (что странно с учетом наличия DC-DC), то при активном выходе и установленных 30В потребление поднимается до 100мА (1.2Вт) при 12 вольт на входе и до совершенно несуразных 55-60мА (почти 2Вт) при водном 35В.

Вообще параллельно выходу стоит резистор 2.2к и при 30В он рассеивает 0.4Вт, но даже так, почему такое большое потребление, ведь все эти 2Вт уходят в итоге в тепло.

Но мало того, при разных переходных процессах плата у меня иногда потребляла 3, а то и все 11 Вт!
Внизу два фото, где видно показания блока питания и то, что при этом к выходу преобразователя ничего не подключено.

Управление и отображение информации.

1. Как я писал, при включении небольшая анимашка
2. Основной экран, текущее напряжение/ток/мощность, правее режим работы и температура платы, внизу заданное напряжение и ток.
3. Вспомогательный экран, сюда выведена прошедшая емкость Ач и Втч, а также время работы с последнего сброса показаний.
Ниже входное напряжение платы и выходное напряжение/ток.
4. Отображение графика тока и напряжения, вроде и интересно, но на таком мелком экране не очень функционально.
5, 6. Настройки.
M-PRE — Автозапуск настроенной ячейки памяти.
U-SET — Установка напряжения по умолчанию
I-SET — Установка тока по умолчанию
S-LVP — Минимальный порог входного напряжения
S-OVP — Максимальный порог выходного напряжения
S-OCP — Лимит выходного тока, максимум 5.2А, срабатывает только если при активации выхода есть превышение тока.
S-OPP — Максимальная выходная мощность
S-OTP — Порог срабатывания защиты от перегрева
S-OHP — Лимит времени работы
S-OAH — Лимит емкости Ач
S-OWH — Лимит емкости Втч

В настройках есть странность, да, по умолчанию преобразователь включается с установками тока/напряжения по умолчанию, но у меня было такое, что он запоминал последнее установленное значение и грузился с ними. Скажу больше, то что он загружается с тем что установлено в настройках, я увидел когда уже писал обзор.

7. Дополнительные настройки
Регулировка яркости подсветки
Время автоматического гашения экрана
Коррекция датчика температуры
Настройка цветового оформления

8, 9. По умолчанию яркость имеет уровень 3, регулировать можно от 1 до 5, я сходу поставил 5 так как экран не очень яркий.

1, 2, 3. Установка тока/напряжения проста. Кликаем на энкодер, подсвечивается строка установки напряжения или тока (выбирается вращением), следующий клик выбирает дискретность регулировки, для напряжения максимум 1В, для тока 0.1А. Выход автоматически, при следующем клике на энкодер выберется то, что использовалось ранее.
4. График отображается, но как я писал, функциональность его под вопросом. Кстати непонятно, почему фотоаппарат всегда красный цвет на подобных экранах отображает более блекло чем остальные…
5. Реально порадовало то, что мощность выхода можно установить аж до 110Вт!
6. А вот то, что минимальное выходное напряжение может быть только от 0.6В удивило, чаще в подобных устройствах все таки делают от нуля.

При длительном удержании кнопки включения активируется функция поворота изображения на экране, возможно кому-то будет полезно.

Точность установки выходного напряжения.
В описании заявлялось 0.3%, реально при максимальном напряжении получаем 0.7, многовато.

Для тока погрешность допускается немного больше, 0.4%, реально при макс токе я получил ближе к 0.5%, но на самом деле можно сказать что учетом допустимой ошибки в 3 младших знака проходит, но совсем впритирку.

Нет, это еще не измерение КПД, это наблюдение.
Пока тестировал точность задания тока обратил внимание что при выходной мощности в 1.6Вт от БП потребляется почти 15 ватт при входном напряжении 12 вольт, поднял напряжение до 24 вольт, но особо ничего не изменилось, а точнее стало даже хуже.
Т.е. преобразователь в тепло переводил целых 14Вт!

Попутно заметил, что при регулировке входного напряжения, где-то в диапазоне 28-32В и нагруженном выходе иногда у БП проскакивало ограничение тока, т.е. переход в режим СС при том, что как было видно выше, мощность небольшая, а ток моего БП установлен на уровне 5.1А.

В общем игрался, игрался, попутно заметил что температура поднялась примерно до 75 градусов и в момент одной такой регулировки экран у преобразователя побелел, ток от БП упал и похоже что плата отключилась.
Ну все думаю, капец котенку….

И таки да, проверка показала, что по выходу имеем около 4 Ом. Экран минут через 20 ожил, а попытка включения загоняла преобразователь в ошибку OEP, как я потом понял, это ошибка установки выходных параметров, т.е. преобразователь не может выдать ничего из того что задано.

Зная топологию SEPIC преобразователей становится понятно, что к такому мог привести выход из строя выходного диода, в случае же выхода из строя транзистора плата не смогла бы вообще стартовать, да и чтобы получить КЗ в таком случае, должно было пробить еще и развязывающий конденсатор.

Так и есть, поднял обе ноги сборки и один диод оказался в КЗ, припаял исправную половинку и попробовал запустить.

Плата запустилась на 10-20 секунд так, чтобы я смог сделать фото и опять свалилась с ошибкой

Результат то же самый, КЗ по выходу. Причем что любопытно, в найденном мною даташите указывалось, что это не сборка из двух диодов, а одиночный диод, но тогда бы не заработало после отпаивания одного из выводов….
В любом случае сборка умерла.

Выковырял из платы от какого-то монитора сборку MBR10100 и припаял её на место предыдущей. Понятно что корпус отличается, потому пришлось поставить её вертикально. Потом я не неё установил радиатор с той же платы монитора.
Включаю, проверяю, все отлично.

В описании встречалась информация что данный преобразователь можно использовать для заряда аккумуляторов. На самом деле это было понятно и просто исходя из топологии преобразователя. но надо учитывать, что параллельно выходу стоит резистор 2.2кОм и при отключенном заряде он будет разряжать аккумулятор.

Нагрузочные тесты.
В описании говорилось что минимальное входное 6 вольт, реально плата начинает работать от 5, но при попытке выставить высокое выходное напряжение сначала устанавливает его на короткое время, а потом сбрасывает.
При 6 вольт работает уже более-менее, но я бы не рассчитывал получит большую мощность с выхода.

Но так как питать такую плату от 6 вольт имеет не очень большой смысл, то начал тесты с 12 вольт, как наиболее близкие к реальности.
Сначала выставил на выходе 5 вольт, плата отключилась почти при 25Вт на выходе, сработало ограничение тока по выходу так как ток почти дошел до 5.1А. Напряжение упало на 50мВ в сравнении с тем что было без нагрузки.

Установил по выходу 30В и здесь уже сработала защита по входу платы, потому мощность была максимум 60Вт. Напряжение по выходу упало на 40мВ (слева на графике напряжение на момент начала теста, справа есть конечное).

Ладно, понимаю что 12 вольт мало для нормальной работы, поднял до 19 вольт как аналог питания от ноутбучного БП.

Проверять при 5В выходного нет смысла, там я уперся в выходной ток, потому выставил на выходе 30В (максимальное входное напряжение моей нагрузки).
Здесь уже отсечка была по входному току, но мощность на выходе достигла 80 Вт.

При срабатывании защиты выводятся разные уведомления, в данном случае было ОРР — защита от превышения по мощности.
Вспоминаю что мощность можно поднять и выставляю 100Вт.

Повторяю тест с теми же параметрами, теперь преобразователь отключился по превышению входного тока, выходная мощность составила 92Вт. В принципе все правильно, 19х5.1=99Вт, а ведь есть еще КПД.

Ладно, поднимаю входное до 35В, повторяю тест и получаю ожидаемые 100Вт.

Но ведь в настройках был максимум в 110Вт, попробую выставить.

36 вольт на входе, 22 на выходе, мощность в 110Вт получена.

Так как тест проходил в автоматическом режиме, то сделал фото «на бегу», но все равно видно что почти 110 Вт есть реально.

А потом преобразователь опять выкинул белый

флаг

экран…
Вообще за все время он меня откровенно задолбал этим белым экраном, но я выяснил что:
1. Изображение восстанавливается после примерно 20 минут «отдыха»
2. Чаще всего это происходило при примерно 75 градусах на встроенном термометре.
3. Если плату выключить и включить, то все равно белый экран, но функционально все работает, можно не только включить выход, а и регулировать напряжение/ток, но делать это придется по памяти
4. Вот в этом случае после снятия/подачи напряжения и активации выхода плата давал на выход то напряжение, которые было перед отключением, а не то, что установлено «по умолчанию», причем можно было так включать/выключать, все равно запоминалось последнее перед отключением даже если его с белым экраном изменить (для ускорения тестов приходилось так делать).
5. Было такое что белый экран появлялся и при меньшей температуре, просто вот раз и всё, пробовал остудить, не помогает, только ждать и потом перезагрузить питание.

Пока тестировал, преобразователь прогрелся даже с тем, что я делал паузы. Конечно можно сказать что мол я ведь снял радиатор, но друзья, давайте будем объективными:
1. Изначально радиатор стоял без пасты и ничего не охлаждал
2. Добавление пасты ничем не помогло, также как не помогло бы даже охлаждение радиатора жидким азотом, так как отводить тепло от пластикового корпуса бессмысленно
3. Диод был вынесен за пределы платы, соответственно он не грел эту плату и тепловой режим транзистора был заметно облегчен.

В итоге транзистор легко нагревался в ходе коротких тестов до 75-80 градусов, а при мощностях 100-110 Вт и более 120. О долговременных тестах речь даже не шла.

Как оказалось, я не одинок, есть даже «народный метод» решения этой проблемы. В комментариях на алиэкспресс человек показал вариант доработки, за что ему большое спасибо, но как всегда есть несколько «но»:
1. Подобрать подходящие пластинки сложно, они должны быть не сильно тонкими чтобы проводить тепло и не сильно толстыми чтобы их реально было согнуть.
2. Припаять их тоже может стать нетривиальной задачей, но это самая мелкая проблема
3. Их надо выставить в одну плоскость.
4. Самая сложная проблема — радиатор надо однозначно изолировать от пластинок так как корпуса элементов не соединены электрически, а кроме того, если соединить радиатор и фланец транзистора, то получим мощный генератор помех так как частота работы преобразователя составляет приличные 500кГц.

Стало любопытно и я решил измерить КПД в разных режимах работы, а так как это преобразователь не только с регулируемым выходом, а и с универсальным входом, то тестов получилось очень много, для сокращения места свел их на несколько графиков в в зависимости от выходного напряжения.

Выходное 5 вольт, входное 12, 19 и 35, единицы по горизонтали соответствуют ступеням по 5Вт.

Как можно видеть, преобразователю тяжело работать на понижение с большой разницей вход/выход и это понятно, сама топология SEPIC хоть и универсальна, но дается это за счет снижения КПД.

Выходное 12 вольт, входное 12, 19, 28 и 35, картина аналогична, при высоком входном напряжении опять снижение КПД, оптимум при 19 вольт.
Единицы измерения по горизонтали здесь и далее соответствуют ступеням в 10 Вт, здесь же видно что график 12В обрывается раньше, так как в таком режиме мощность может быть только до 60Вт.

Выходное 24В, по сути все то же самое что было сказано выше.

А этот тест я проводил скорее в дополнение, выходное 30В, входное 12 и 35.
Ничего необычного, кроме того что график 12-30В обрывается уже на уровне 20Вт. Да, я не понял почему, но преобразователь сбрасывает выход если вставить 30Вт, хотя при линейном увеличении я получал до 60Вт…

Пульсации.
Они не были как-то оговорены, но я уже ждал чего-то не очень хорошего и мое ожидание было не просто так. Дело в том, что это опять недостаток SEPIC топологии, у них обычно уровень пульсаций выше чем у привычных «понижаек».

Размах пульсаций почти не зависел от режима работы и был ниже только в одной протестированной комбинации — 35-30В при мощности 80Вт.

В ходе измерения обратил внимание на характерный наклон осциллограммы и предчувствие не обмануло, в некоторых режимах работы, особенно при большом входном и малом выходном напряжении наблюдается такая вот картина если выставить более медленную развертку….

Параллельно с подготовкой обзора пытался реализовать идею мелкого регулируемого блока питания, для чего понадобился первичный источник, в роли которого выступала примитивная схема на базе классической IR2153, к сожалению в продаже не нашлось версии с индексом D, потому пришлось поставить диод на драйвер верхнего плеча.

Схема простейшая и не содержит защиты от КЗ, по задумке её роль выполняет сама плата преобразователя так как имеет защиту от превышения входного тока, но на всякий случай по выходу все таки поставил предохранитель на 5А.
Конденсаторы С12 и С13 хорошо бы поставить емкостью 0.22мкФ, но у меня таких дома не нашлось, а оперативно купить что-то из-за карантина не представляется возможным, трансформатор от АТХ БП, не перематывал, остальные компоненты большей частью от БУ плат ЖК мониторов.

Примерно такой БП трудится у меня уже более 5 лет в моем стареньком блоке с платой 6005, только там он мощнее и имеет два выхода, а также регулировку оборотов вентилятора на базе DC-DC 34063.

Хотя на мой взгляд, в данном случае гораздо проще применить какой нибудь готовый подходящий БП на 24 вольта и 120-150 ватт мощности и не заморачиваться с самоделками.

Потом по схеме набросал не менее простую печатную плату и изготовил её при помощи ЛУТ и бумаги также описанной в одном из моих обзоров.

Цель была сделать максимально компактный блок питания под конкретный корпус.

Корпус просто купил подбирая размер «на глаз», главное чтобы нормально стал преобразователь.

Из-за малого выбора корпусов пришлось выходные клеммы вынести на заднюю панель, ну а дальше дремель, шуруповерт, надфиль и немного приложения рук.

Компоновка получилась хоть и плотная, но тем не менее достаточно свободная для прохождения воздуха от боковых отверстий к вентилятору, хотя возможно отверстий стоит сделать больше.

Почти готовое устройство, увы, расположить клеммы на передней панели невозможно, а следующий по размеру корпус был совсем большой.
Вообще это средний вариант данного корпуса, одна половинка высокая, вторая низкая, дома есть еще вариант с двумя низкими, можно было взять с двумя высокими, но опять же, его не было, разве что брать два средних и комбинировать.

Еще надо будет сделать сеточку на вентилятор и заменить винтики на черные.

Хоть преобразователь и требует доработки охлаждения и у меня уже есть идеи по этому поводу, но уже сейчас он вполне работоспособен, просто при большой мощности нагрузки быстро уйдет в перегрев и отключится. Да и по хорошему трансформатор перемотать не помешало бы.

А вот теперь попробую резюмировать все вышесказанное.
На мой взгляд данный преобразователь имеет больше недостатков, чем достоинств. Он перегревается, производитель забыл положить термопасту, да и вообще неправильно реализовал охлаждение. Размах пульсаций большой, КПД низкий, периодически вылетает в белый экран, да и вообще при работе с ним ощущение что он «тормозит», т.е. есть некоторая плавность при установке напряжения, несколько замедленный отклик интерфейса, иногда загружается с параметрами по умолчанию, иногда с теми что были перед отключением.

Но на самом деле есть и положительные моменты, лично мне понравился удобный диапазон выходного напряжения и тока, можно было конечно сделать регулировку и от нуля, но на моей практике редко когда надо ниже чем 0.6 вольта.
Также понравилась программная функциональность, единственно что я хотел бы иметь, возможность полного отключения заряда при падении тока ниже 1/10 от установленного, т.е. эмулировать полноценное зарядное.

Что еще можно доработать чтобы уменьшить нагрев и улучшить КПД.
1. Заменить силовой транзистор. На мой взгляд смысл не очень большой, разве что из-за более удобного размещения на радиаторе, что я и планирую.
2. Выходную диодную сборку поставить на больший ток, меньше нагрев, выше КПД.
3. Убрать транзистор защиты от переполюсовки, меньше будет греть плату под силовым транзистором преобразователя и также поднимет КПД
4. Перенести резистор, который стоит параллельно выходу, куда нибудь подальше, чтобы уменьшить подогрев платы.
5. Заменить конденсаторы, особенно развязывающий конденсатор, который стоит между дросселями, на фирменные с меньшим ESR. Может помочь как в плане КПД, так и уменьшения пульсаций.
6. Заменить выходной дроссель на другой, рассчитанный на больший ток, также немного может уменьшить нагрев.
7. Заменить дроссели преобразователя также на более «высокотоковые», меньше нагрев, выше КПД.

Конечно внимательный читатель задаст вопрос, а имеет ли смысл такой преобразователь при настолько большом количестве доработок. На мой взгляд, да, сама идея неплохая, но вот имеет ли это экономический смысл, не уверен.
Этот же преобразователь продают на Алиэкспресс за $13.90

Вообще сама идея применения SEPIC здесь была изначально неправильна, особенно это видно по падению КПД при высоком водном и низком выходном напряжении. Если уж хотелось сделать реально красиво и правильно, то я бы на месте производителя применил LTC3780. Это не SEPIC, но при этом универсальный преобразователь с неплохим КПД при этом лишенный недостатков SEPIC, например по уровню пульсаций — обзор.

На этом у меня все, блок питания скорее всего доработаю когда закончится карантин или если найду дома нужные мне детали, те же конденсаторы и подходящий транзистор, также нужен будет второй вентилятор такого же размера, вот его точно дома нет :(

Introduzione di alta configurazione della versione XY5008-W

Il prodotto Yota collegalato alla rete attraverso 2,4G Роутер WiFi, con diretta attraverso la trasmissione di rete interna, di comunicazione in tempo reale, e сервер di rete esterna. Quindi, I dati possono essere controlato e visualizzati in qualsiasi momento e ovunque come lungo come la rete di stato e senza limiti di distanza sono illimitato.

Приложение indirizzo di скачать:

IOS di Apple: ricerca в Apple store: Xinyilian o sinilink

Android: https://m.pp.cn/detail.html?ch_src=pp_dev&appid=7921907&ch=default o scaricare dal sito ufficiale: http://www.sinilink.com/release.apk

O scaricare APP sul tuo telefono celluare: PP Assistente, la ricerca di ‘xinyilian ‘на scaricare в PP Assistente o eseguire la scansione del codice на scaricare l’applicazione

(Nota: Android principali mercati tradizionali sono stati messi sul Xiaomi mercato, E il Huawei mercato ha recentemente Je stato messo in scaffali)

Для i clienti stranieri, si prega di scaricare dal Mercato di Google, la ricerca di ‘sinilink ‘для scaricare

Клиент компьютерного программного обеспечения indirizzo di скачать:

Http:/Wechat

Più dispositivi possono essere aggiunti al dell’interfaccia приложение для supportare sistemi Android e IOS.

Контроллеры этой группы построены по схеме бустерных преобразователей напряжения с интегрированным силовым транзистором и внешним диодом Шоттки. Так же как и рассмотренные выше повышающие преобразователи напряжения, все конверторы имеют встроенную цепь компенсации усилителя сигнала ошибки, специально адаптированную для применения недорогих танталовых конденсаторов на выходе преобразователя. Номенклатура и краткие электрические характеристики микросхем этой группы приведены в таблице 3.

Контроллеры MP1517 и MP1527 — самые мощные в этой группе. Каждый из них имеет интегрированный ключевой транзистор с сопротивлением канала 150 мОм и обеспечивает ток нагрузки до 3 А (рекомендуемое значение — до 1,5 А). Схема включения и типовой КПД преобразователя напряжения на базе MP1517 показаны на рис. 17, структурная схема — на рис. 18. Контроллеры построены по схеме ШИМ с регулировкой по току и фиксированной частотой преобразования (1,1 МГц у MP1517 и 1,3 МГц у MP1527). Микросхемы имеют защиту от низкого входного напряжения, обрыва нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска. Низкое напряжение ОС MP1517 (0,7 В) позволяет использовать его в качестве мощного драйвера светодиодов и светодиодных ламп без дополнительного усилителя тока. Микросхема MP1527 имеет дополнительный двунаправленный вывод FAULT («Авария»). Если в системе используется несколько преобразователей напряжения MP1527, то имеется возможность соединить все выводы FAULT для одновременного выключения всех контроллеров в случае возникновения аварийной ситуации хотя бы в одном из них. Контроллеры упакованы в миниатюрные корпуса для автоматизированного монтажа QFN16 (4×4 мм), MP1527 также выпускается в корпусе TSSOP14.

Рис. 18. Структурная схема преобразователя напряжения МР1517

Самый маломощный контроллер в рассматриваемой группе — MP1522 в корпусе для поверхностного монтажа SOT23-5 (рис. 19). В нем использована схемотехника преобразователя напряжения с постоянным пиковым током дросселя и переменной частотой коммутации. Он имеет интегрированный ключевой транзистор с сопротивлением канала 500 мОм и обеспечивает ток нагрузки до 0,3 А.

Рис. 19. МР1522 в корпусе для поверхностного монтажа SOT23-5

Для применений, требующих постоянной частоты коммутации, альтернативой MP1522 служит микросхема MP1541 (рисунок 20), также выпускающаяся в корпусе SOT23-5. Она позволяет реализовывать надежные, миниатюрные и недорогие преобразователи напряжения с током нагрузки до 550 мА.

Рис. 20. Микросхема МР1541

В линейке повышающих преобразователей MPS есть две специализированные микросхемы для питания TFT-панелей — MP1530 и MP1531 (рис. 21). Микросхемы идентичны по структуре и характеристикам и отличаются только частотами преобразования (1,4 МГц у MP1530 и 250 кГц у MP1531). Каждая из них содержит повышающий преобразователь напряжения и два линейных регулятора с положительным и отрицательным выходным напряжением, питающихся от схем с накачкой заряда. Ток нагрузки основного канала может достигать 500 мА, линейных регуляторов — до 10 мА.

Помимо своего основного назначения микросхемы могут применяться и для построения источников питания других устройств, содержащих, например, цифровые микросхемы (выход +5 В) и операционные усилители (выходы ±5…±15 В).

Завершает группу повышающих преобразователей напряжения новая микросхема MP1542, разработанная в начале 2005 года. Ее схема включения показана на рис. 22. Контроллер имеет интегрированный ключевой транзистор с сопротивлением канала 180 мОм и обеспечивает ток нагрузки до 2 А. Частота преобразования может выбираться из значений 0,7 МГц или 1,3 МГц с помощью вывода FSEL. Микросхема имеет защиту от низкого входного напряжения, КЗ нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска, выпускается в миниатюрном корпусе MSOP8.

Рис. 22. Схема включения МР1542

Применение многоуровневых инверторов [ править | править код ]

Многоуровневые инверторы включают в себя матрицу силовых полупроводников и конденсаторных источников напряжения, выход которых генерирует напряжения со ступенчатыми формами сигналов. Коммутация переключателей позволяет добавлять напряжения конденсатора, которые достигают высокого напряжения на выходе, в то время как силовые полупроводники должны выдерживать только пониженные напряжения. На рисунке справа показана принципиальная схема одного фазового отрезка инверторов с различным количеством уровней, для которых действует мощность полупроводников представленных идеальным выключателем с несколькими положениями.

Двухуровневый инвертор генерирует выходное напряжение с двумя значениями (уровнями) относительно отрицательного терминала конденсатора , в то время как трехуровневый инвертор генерирует три напряжения и так далее.

Представим, что m является количеством шагов фазового напряжения относительно отрицательного терминала инвертора, тогда количество шагов в напряжении между двумя фазами загрузки k,

k = 2 m + 1 <displaystyle k=2m+1>

и количество шагов p в фазовом напряжении трехфазной нагрузки в соединении

p = 2 k − 1 <displaystyle p=2k-1>

Имеется три различные топологии для многоуровневых инверторов: зафиксированная на диод (нейтрально зафиксированная) ; зафиксированная на конденсатор (навесные конденсаторы); и каскадно-расположенный многоэлементный с отдельными источниками постоянного тока .Кроме того, несколько модуляций и стратегий управления были разработаны или приняты для многоуровневых инверторов включая следующее: многоуровневая синусоидальная модуляция длительности импульса (PWM), многоуровневое выборочное гармоническое устранение и векторная пространством модуляция (SVM).

Основные положительные стороны многоуровневых инверторов заключаются в следующем:

1) Они могут генерировать выходные напряжения с чрезвычайно низким искажением и понизить dv/dt.

2) Они тянут входной ток с очень низким искажением.

3) Они генерируют меньшее напряжение общего режима (CM), таким образом уменьшая стресс в моторных подшипниках. Кроме того, с помощью сложных методов модуляции, напряжения CM могут быть устранены.

4) Они могут работать с более низкой частотой переключения.

Топология каскадных многоуровневых инверторов

Различная топология преобразователя представленная здесь, основывается на последовательном соединении однофазных инверторов с отдельными источниками постоянного тока. Рисунок справа показывает цепь электропитания для одного участка фазы девятиуровневого инвертора с четырьмя клетками в каждой фазе. Получающееся фазовое напряжение синтезируется добавлением напряжений, сгенерированных различными участками.

Каждый однофазный инвертор полного моста генерирует три напряжения на выводе: + Vdc, 0, и — Vdc. Это стало возможным путем подключения конденсаторов последовательно с ac стороной через четыре выключателя питания. Получающееся выходное колебание напряжения переменного тока от-4 Vdc до 4 Vdc с девятью уровнями и ступенчатой формой сигнала, почти синусоидальной, даже без применения фильтров.

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Схема dc-dc преобразователя

На главную страницу

   Это DC-DC преобразователь напряжения с 5-13 В на входе, до 12 В выходного постоянного тока 1,5 А. Преобразователь получает меньшее напряжение и дает более высокое на  выходе, чтобы использовать там где есть напряжение меньшее требуемых 12 вольт. Часто он используется для увеличения напряжения имеющихся батареек. Это по сути интегральный DC-DC конвертер. Для примера: есть литий-ионный аккумулятор 3,7 В, и его напряжение с помощью данной схемы можно изменить, чтобы обеспечить необходимые 12 В на 1,5 А.
Схема DC-DC преобразователя на MC34063A
   Преобразователь легко построить самостоятельно. Основным компонентом является микросхема MC34063, которая состоит из источника опорного напряжения (температурно-компенсированного), компаратора, генератора с активным контуром ограничения пикового тока, вентиля (элемент «И»), триггера и мощного выходного ключа с драйвером и требуется только несколько дополнительных электронных компонентов в обвязку для того чтобы он был готов. Эта серия микросхем была специально разработана, чтобы включены их в состав различных преобразователей.
Достоинства микросхемы MC34063A 
Работа от 3 до 40 В входа
Низкий ток в режиме ожидания
Ограничение тока
Выходной ток до 1,5 A
Выходное напряжение регулируемое
Работа в диапазоне частот до 100 кГц
Точность 2%

Описание радиоэлементов

R — Все резисторы 0,25 Вт.

T — TIP31-NPN силовой транзистор. Весь выходной ток проходит через него.

L1 — 100 мкГн ферритовые катушки. Если придётся делать самостоятельно, нужно  приобрести тороидальные ферритовые кольца наружным диаметром  20 мм и внутренним диаметром 10 мм, тоже 10 мм высотой и проволоку 1 — 1,5 мм толщиной на 0,5 метра, и сделать 5 витков на равных расстояниях. Размеры ферритового кольца не слишком критичны

Разница в несколько (1-3 мм) приемлема. 

D — диод Шоттки должен быть использован обязательно

TR — многовитковый переменный резистор, который используется здесь для точной настройки выходного напряжения 12 В. 

C — C1 и C3 полярные конденсаторы, поэтому обратите внимание на это при размещении их на печатной плате.
Список деталей для сборки
Резисторы: R1 = 0.22 ом x1, R2 = 180 ом x1, R3 = 1,5 K x1, R4 = 12K x1
Регулятор: TR1 = 1 кОм, многооборотный 
Транзистор: T1 = TIP31A или TIP31C
Дроссель: L1 = 100 мкГн на ферритовом кольце
Диод: D1 — шоттки 1N5821 (21V — 3A), 1N5822 (28V — 3A) или MBR340 (40В — 3A) 
Конденсаторы: C1 = 100 мкФ / 25V, C2 = 0.001 мкФ , C3 = 2200 мкФ / 25V
Микросхема: MC34063 
Печатная плата 55 x 40 мм  

   Заметим, что необходимо установить небольшой алюминиевый радиатор на транзистор T1 — TIP31, в противном случае этот транзистор может быть поврежден из-за повышенного нагрева, особенно на больших токах нагрузки. Даташит и рисунок печатной платы прилагается

   Схемы блоков питания

Порядок вывода комментариев: По умолчанию Сначала новые Сначала старые 1Дмитрий   (22.02.2016 17:47)
а такая микросхема подойдет mc34063ag

2MAESTRO   (22.02.2016 17:59)

Да, пойдёт.

3Дмитрий   (23.02.2016 15:22)

резистор на 0.22 ом,можно заменить на какой нибудь другой? если да то на какой?

4MAESTRO   (23.02.2016 15:43)

Можно из нескольких по 1 Ому паралллельно составить его.

5Дмитрий   (25.03.2016 07:53)

Прошу помощи или совета: собрал микросхему все работает,выдает 12в, подключаю лампочку на 12в горит, замечательно! Но как только я подсоединяю усилитель НЧ С РАБОЧИМ НАПРЯЖЕНИЕМ 6-18в (ток потребления 60-150 mA )начинает что то пищать, ну пусть бы пищало, только этот писк передается в динамики.да и еще заметил если прибавить звука побольше писк пропадает и в динамиках и в схеме. Не подскажешь в чем может быть проблема или может посоветуешь что нибудь?

6воин2010   (07.04.2016 17:38)
либо конденсатор плохой , либо нужно повысить рассеивающую мощность резисторов , начни с кондюков , их всего 3 , легче и быстрей проверишь. 7воин2010   (10.04.2016 16:00)
вопросик ,собрал схему но выдаёт макс 1.7 вольт , где совершил ошибку подскажите

  • Снижение расхода топлива в авто
  • Ремонт зарядного 6-12 В
  • Солнечная министанция
  • Самодельный ламповый
  • Фонарики Police
  • Генератор ВЧ и НЧ
  • 2009-2020, «Электронные схемы самодельных устройств». Электросхемы для самостоятельной сборки радиоэлектронных приборов и конструкций. Полезная информация для начинающих радиолюбителей и профессионалов. Все права защищены.
  • Вход
  • Почта
  • Мобильная версия

На XL6009

Стабилизатор преобразователь XL6009

Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до  моделей с индикаторами напряжения.

Пример эффективности:

92% при преобразовании 12V в 19V, нагрузка 2А.

В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.

Типовая схема включения XL6009

Эффективные решения для серийного производства электронной техники

При выборе элементной базы для серийно выпускаемых изделий, особенно при жестком ограничении себестоимости, на первое место выходят два фактора — цена компонента и, по возможности, отсутствие необходимости настройки и регулировки узла, в котором он используется. Оба эти фактора в той или иной степени влияют на себестоимость конечного продукта. Для мелких партий уникальных и оттого дорогих приборов их влияние незначительно, а вот для массовых изделий они могут быть определяющими.

Продукция компании MPS как нельзя лучше удовлетворяет указанным критериям. Более того, MPS позиционируется на мировом рынке как производитель и поставщик микросхем для крупных производителей OEM и ODM.

В своих разработках автор применяет микросхемы MPS более года, за это время они вошли в состав нескольких серийных изделий. Из опыта работы с контроллерами MPS хочется особо отметить следующие моменты:

  • Высокая стабильность и повторяемость характеристик микросхем: независимо от партии основные характеристики близки к типовым значениям, заявленным в документации.
  • Высокая устойчивость УСО и схемы обратной связи в целом: контроллеры нечувствительны к номиналам и к типу применяемых конденсаторов, внешние цепи компенсации не требуют подстройки.
  • Высокая эффективность: при правильном выборе параметров дросселя удается получить КПД значительно выше, чем типовые значения, приводимые в документации. Например, в преобразователе напряжения на базе MP1517 мощностью 22,5 Вт (15, 1,5) перегрев контроллера составляет менее 15 °С.
  • Готовое изделие не требует никакой регулировки, что позволяет использовать при серийном производстве простой тест на включение.

Напряжение выхода

Модуль производят в 4 вариантах:

  1. С напряжением — 3,3 В.
  2. 5 В.
  3. 12 В.
  4. LM2596ADJ — регулируемый вариант.

Повсеместно применяется настраиваемая версия, так как ее много на складах электронных фирм. Она не в дефиците, а дополнения к ней — самые простые, это всего лишь 2 дешевых резистора. Разумеется, популярен и вариант на 5 В.

Чтобы задать выходное напряжение, можно использовать DIP-переключатель или поворотник. И в том, и в другом случае, нужны точные резисторы. Напряжение настраивается без помощи вольтметров.

Как сгладить пульсации напряжения вход

Получается, что если использовать LM2596 как понижающий преобразователь, конденсатор входа, стоящий сразу за диодным мостом, обладает небольшой емкостью от 50 до 100 мкФ.

Примеры повышателей

XL4016

Рассмотрим 4 модели, которые у меня есть в наличии. Тратить время на фото не стал, взял и продавцов.

Характеристики.

Tusotek XL4016 Драйвер MT3608
Входное, В 6 – 35В 6 – 32В 5 – 32В 2-24V
Ток на входе до 10А до 10А
Выход, В 6 – 55В 6 – 32В 6 – 60В до 28В
Ток на выходе 5А, макс 7А 5А, макс 8А макс 2А 1А, макс 2А
Цена 260руб 250руб 270руб 55руб

У меня большой опыт работы с китайскими товарами, большинство из них сразу имеют недостатки. Перед эксплуатацией их осматриваю и дорабатываю для увеличения надежности всей конструкции. В основном это проблемы сборки, которые возникают при быстрой сборке  изделий.  Дорабатываю светодиодные прожекторы, лампы для дома, автомобильные лампы ближнего и дальнего света, контроллеры для управления дневными ходовыми огнями ДХО. Рекомендую это делать всем, за минимум потраченного времени срок службы можно увеличить вдвое.

Реальная мощность зависит от режима, в спецификациях указывают максимальную. Характеристики конечно у каждого производителя будут отличаться, они ставят разные диоды, дроссель мотают проводом разной толщины.

Работа схемы

Схема устройства представлена на следующем рисунке.

В схеме необходимо сделать следующие изменения:

  1. Соедините один вывод катушки индуктивности с истоком MOSFET транзистора, а другой ее вывод соедините со светодиодом (последовательно которому можно включить резистор на 1 кОм). Нагрузка подключается параллельно этой части схемы.
  2. Подключите резистор 10 кОм между затвором и истоком MOSFET транзистора.
  3. Подключите конденсатор параллельно нагрузке.
  4. Подключите положительный вывод батареи к стоку транзистора, а отрицательный – к конденсатору.
  5. Подключите положительный вывод диода к отрицательному выводу батареи, а его отрицательный вывод – к истоку транзистора.
  6. Затвор транзистора подключите к контакту платы Arduino, на котором можно задействовать широтно-импульсную модуляцию (ШИМ). В данном случае мы использовали контакт 6 платы Arduino.
  7. Подключите контакт GND (земля) платы Arduino к истоку транзистора.
  8. Подключите крайние клеммы потенциометра к контактам 5V и GND платы Arduino соответственно. А средний контакт потенциометра подключите к аналоговому контакту A1 платы Arduino.

Функция платы Arduino

В нашей схеме плата Arduino будет подавать прямоугольные тактовые импульсы частотой примерно 65 кГц на базу MOSFET транзистора. Это приведет к быстрым переключениям MOSFET транзистора и мы в результате получим некое усредненное значение напряжения. Чтобы лучше понять принцип действия этих импульсов при регулировке величины напряжения рекомендуем ознакомиться со следующими материалами на нашем сайте:

  • регулятор силы свечения светодиода на основе платы Arduino;
  • как использовать АЦП в плате Arduino Uno.

Функция MOSFET транзистора

Mosfet транзистор в нашей схеме используется для двух целей:

  1. Для высокоскоростного переключения выходного напряжения.
  2. Для обеспечения большой силы тока с минимальным рассеиванием энергии.

Функция катушки индуктивности

Она используется для сглаживания выбросов напряжения которые могут повредить mosfet транзистор. Катушка индуктивности запасает энергию когда mosfet транзистор включен (on) и высвобождает накопенную энергию когда он выключен (off). Поскольку в схеме мы имеем дело с достаточно высокой частотой, то величина индуктивности должна быть достаточно малой (около 100 мкГн).

Функция диода Шоттки

Диод Шоттки в нашей схеме замыкает петлю тока которую переключает mosfet транзистор и, таким образом, обеспечивает сглаживание тока нагрузки. В отличие от обычных диодов диод Шоттки рассеивает очень мало тепла (энергии) и может работать на высоких частотах.

Функция светодиода

Яркость свечения светодиода косвенно указывает на величину напряжения на нагрузке и изменяется в зависимости от вращения ручки потенциометра.

Функция потенциометра

При вращении ручки потенциометра изменяется величина напряжения, поступающего на контакт A1 платы Arduino. Значение с выхода АЦП контакта A1 затем преобразуется в диапазон от 0 до 255 и подается на контакт 6 платы Arduino для регулировки значения ШИМ.

Конденсатор сглаживает напряжение, подаваемое на нагрузку.

Зачем резистор между стоком и истоком

Даже небольшой шум на затворе MOSFET транзистора может привести к его включению. Чтобы предотвратить этот эффект рекомендуется включать резистор большого номинала между затвором и истоком транзистора.

Tusotek

На мой взгляд, самый лучший из всех повышающих стабилизаторов. У некоторых бывает элементы не имеют запаса по характеристикам или они ниже чем у ШИМ микросхем, из-за чего они не могут дать и половины обещанного тока. У Tusotek на входе стоит конденсатор 1000мФ 35V, на выходе 470мФ 63V. Теплоотводной стороной с металлической пластиной  они припаяны к плате. Но припаяны плохо и косо, на плате лежит только один край, под другим щель. Без разбора не понятно, насколько хорошо они запаяны. Если совсем плохо, то лучше их демонтировать и поставить этой стороной на радиатор, охлаждение улучшится в 2 раза.

Переменным резистором выставляется необходимое количество вольт.  Оно останется неизменным, если менять напряжение на входе, оно от него не зависит. Например, ставил на выходе 50В, на входе с 5В повышал до 12В, поставленные 50V  не менялись.

Работа понижающего преобразователя напряжения постоянного тока

При подаче питания на схему mosfet транзистор будет переключаться с частотой примерно 65 кГц. Это приводит к тому, что катушка индуктивности будет сохранять энергию когда транзистор включен и отдавать запасенную энергию в нагрузку когда он выключен. Поскольку все это происходит с высокой частотой, то на нагрузке мы получим усредненное значение напряжения, зависящее от положения ручки потенциометра. При увеличении значения напряжения при помощи вращения ручки потенциометра, подаваемого на контакт A1 платы Arduino, напряжение на нагрузке будет также увеличиваться поскольку будет увеличиваться коэффициент заполнения ШИМ на контакт 6 платы Arduino.

И поскольку MOSFET транзистор является зависимым от напряжения устройством, это напряжение ШИМ автоматически приведет к изменению напряжения на нагрузке.

В нашем примере мы в качестве нагрузки использовали двигатель постоянного тока (на фото ниже). Таким образом, вращая ручку потенциометра, мы управляем скоростью вращения двигателя (и яркостью свечения светодиода).

Возрастание тока выхода

Ток микросхемы довольно высок, но иногда требуется еще больше.

Запараллельте преобразователи, настроенные на одинаковое напряжение выхода. При таких обстоятельствах нельзя использовать простые резисторы smd в цепи, задающей напряжение, Feedback. Применяйте резисторы с точностью до 1% или задавайте напряжение самостоятельно с помощью переменного резистора.

Если вы не уверены, что разброс напряжения мал, параллельте преобразователи с помощью небольшого шунта с сопротивлением несколько десятков мОм. Тогда всю нагрузку возьмет на себя преобразователь с наибольшим напряжением, и не факт, что он выдержит.

Можно воспользоваться высоким уровнем охлаждения с помощью большого радиатора или многослойной печатной платы крупной площади. Это помогает повысить ток.

Есть еще вариант — вынесение мощного ключа за корпус микросхемы. Поэтому есть возможность использования полевого резистора с небольшим падением напряжения, повысить КПД и ток выхода.

Объяснение работы программы для Arduino

Полный код программы для Arduino приведен в конце статьи, здесь же мы рассмотрим только его наиболее важные фрагменты.

В переменную x мы будем записывать значение, которые мы будем получать с выхода АЦП контакта A1.

В переменную w мы будем записывать сопоставленное значение в диапазоне от 0 до 255. Значение с выхода АЦП платы Arduino (от 0 до 1023) преобразуется (сопоставляется) в диапазон от 0 до 255 с помощью функции map.

Обычная частота ШИМ на контакте 6 платы Arduino составляет приблизительно 1 кГц. Этого недостаточно для работы нашего понижающего преобразователя напряжения постоянного тока. Поэтому эту частоту необходимо значительно увеличить с помощью следующей строчки кода в функции void setup:

Мощные преобразователи

Для особых случаев бывают нужны мощные DC-DC повышающие преобразователи на 10-20А и до 120В. Покажу несколько популярных и доступных моделей. Они в основном не имеют маркировки или продавец её скрывает, чтобы не покупали в другом месте. Лично не тестировал, по вольтажу они сосуществуют по обещанным характеристикам. А вот ампер будет немного поменьше. Хотя изделия такой ценовой категории у меня всегда держат заявленную нагрузку, покупал похожие аппараты только с ЖК экранами.

600W

Мощный №1:

  1. power 600W;
  2. 10-60V преобразует в 12-80V;
  3. нагрузка на выходе до 10А;
  4. цена от 800руб.

Найти можно по запросу «600W DC 10-60V to 12-80V Boost Converter Step Up»

400W

Мощный №2:

  1. power 400W;
  2. 6-40V преобразует в 8-80V;
  3. на выходе до 10А;
  4. цена от 1200руб.

Для поиска укажите в поисковике «DC 400W 10A 8-80V Boost Converter Step-Up»

B900W

Мощный №3:

  1. power 900W;
  2. 8-40V преобразует в 10-120V;
  3. на выходе до 15А.
  4. цена от 1400руб.

Единственный блок который обозначают как B900W и его можно легко найти.

+

avatar

  • acn4msr
  • 10 августа 2021, 18:25

Они надеются, что источник тоже будет на 400аливатт

+

avatar

  • ber3
  • 10 августа 2021, 20:33

источник тоже будет на 400аливатт

БП от компа, не?

+

avatar

  • Mefistofel
  • 10 августа 2021, 21:02

Понижать будем с 12В? Ну, если доработать схему, то с 24 даже. Но тоже такое себе. Нужно что-то хотя бы на 55-60В для источника

+

avatar

  • etointeresno
  • 11 августа 2021, 01:59

Управление этим БП на редкость не удобное. Надо +100500 кнопок и крутилок нажимать.

+

avatar

  • kirich
  • 11 августа 2021, 11:11

Понижать будем с 12В?

Судя по надписи на заглавной картинке там SEPIC, а значит он и при 12 вольт выдаст на выходе 50, но может быть другое ограничение, максимальный входной ток, например полную мощность отдает когда на входе более 24 вольта, но это надо внимательно читать китайско-русский перевод.

+

avatar

  • Mefistofel
  • 11 августа 2021, 14:16

У них на странице товара есть надпись «Note: this product is step-down digitaly controlled regulated power supply, that is, the ouput voltage must be lower than the input voltage». Там дальше приписка, что выходное будет минимум на 1В ниже чем входное.

+

avatar

  • ber3
  • 13 августа 2021, 07:21

Понижать будем с 12В?

он НЕОЖИДАННО умеет повышать… :)

+

avatar

  • Mefistofel
  • 13 августа 2021, 07:40

Именно поэтому на странице товара крупно написано, что он он только понижающий и что что выходное напряжение будет минимум на 1в меньше чем входное?

+

avatar

  • master-bo
  • 10 августа 2021, 18:52

Позовите Вия! (Кирыча)
)))

+

avatar

  • DVANru
  • 10 августа 2021, 19:20

И, поднимите ему веки!

+

avatar

  • Bossa
  • 10 августа 2021, 18:53

36 вольт и 5 ампер = 180 ватт, а не 75

+

avatar

  • nsn
  • 10 августа 2021, 19:32

Видимо, там бывает 36В, бывает 5А, но в разное время. )

+

avatar

  • ber3
  • 10 августа 2021, 20:35

36 вольт и 5 ампер = 180 ватт, а не 75

считать то мы умеем, только он вырубается при 78 вт! проверенно. :)) при этом и 36в и 5а ( по отдельности) выдает! :)

+

avatar

  • dima191
  • 11 августа 2021, 03:07

Зачем тогда написали, что довольны как слон, если мощность в 2.5 раза ниже заявленной?

+

avatar

  • ber3
  • 13 августа 2021, 07:23

мощность в 2.5 раза ниже заявленной?

там и заявляли 75 вт. :)

+

avatar

  • enjoyneering
  • 10 августа 2021, 19:02

а они глюки в предыдущей версии починили или как всегда решили наплевать на клиентов?

+

avatar

  • Bobekbrat
  • 10 августа 2021, 19:04

По доброй китайской традиции «дорогой друг, мы отдел решения, провести тест проблем решаема, не беспокоиться»

+

avatar

  • pyrotehnik
  • 10 августа 2021, 19:12

как они в 5 раз! увеличили мощность?

синхронное выпрямление сильно поднимает кпд, +активное охлаждение.

+

avatar

  • sancho1971
  • 10 августа 2021, 19:31

активное охлаждение у них и до этого было и судя по фото там ничего не поменялось
версия XYH3606

версия XY5008

+

avatar

  • AlexST77
  • 10 августа 2021, 21:07

Да и ток увеличен всего ничего, а вроде как основные потери за счет силы тока, а совсем не напряжения.

+

avatar

  • nonameID
  • 10 августа 2021, 19:23

Гы прикол однако
пультик как у ргб лент, вифийка приложение какоето, 100500 ват китайських…
На операционный стол бы его да на досмотр с пристрастием

+

avatar

  • dinozauer
  • 10 августа 2021, 19:43

А глюк с энкодером и «раскачка» при импульсной нагрузке присутствуют?☺

+

avatar

  • kke
  • 10 августа 2021, 20:48

Дорогой друг… Блин, у меня походу столько корешей уже в Китае, что лучше аккаунт менять!

+

avatar

  • kirich
  • 10 августа 2021, 21:25

На мой взгляд все таки модели от RuiDeng интереснее, по крайней мере они довольно хорошо работают и проверены.
Такого как здесь, не пробовал, сейчас лежит дома XYH3606-W, тоже с пультиком, дал на время один из читателей, все никак обзор не напишу.

+

avatar

  • iDevilZ
  • 10 августа 2021, 22:22

Если хотябы силовая часть была вынесена отдельно, как здесь

+

avatar

  • Skylab
  • 11 августа 2021, 10:40

А что это за моделька БП?

+

avatar

  • Vic_57
  • 11 августа 2021, 11:35

«На мой взгляд все таки модели от RuiDeng интереснее…» Это-то да, но цена 80 $ за голый регулятор+ автоматически попадаеш под растаможку сразу отрезвляет и уменьшает хотелки.

+

avatar

  • kirich
  • 11 августа 2021, 11:45

но цена 80 $ за голый регулятор+

Откуда взялись 80 баксов? Вообще раза в два дешевле.

автоматически попадаеш под растаможку

Ну это вообще никак не относится в данном случае к теме качества преобразователя.

+

avatar

  • Vic_57
  • 11 августа 2021, 12:10

В Беларуси цена на Али отличается от России… так же как и стоимость разовой посылки без доплаты… извините за ОФФ…

+

avatar

  • kirich
  • 11 августа 2021, 12:12

В Беларуси цена на Али отличается от России…

В два раза?

+

avatar

  • Vic_57
  • 11 августа 2021, 12:22

Да, к сожалению это так… как и оплата труда за одну и ту же работу(((

+

avatar

  • kirich
  • 11 августа 2021, 12:36

Что-то не верится что у Вас преобразователь стоит 80 вместо 40.

+

avatar

  • Vic_57
  • 11 августа 2021, 13:30

+

avatar

  • Vic_57
  • 11 августа 2021, 13:34


Порывшись нашел варианты за 60-70 ;-)

+

avatar

  • kirich
  • 11 августа 2021, 13:45

Так а почему Вы сравниваете цены с RD6006, преобразователь из акции куда как ближе к моделям серии DPS/DPH.
Например DPS5005 стоит около 30, что явно дешевле чем 80.

Преобразователи серии RD конечно хорошие, но цена у них не всем по карману, иногда достаточно купить мелкий DPS.

+

avatar

  • Vic_57
  • 11 августа 2021, 14:13

Ссылочку бы кинули на достойный на Ваш взгляд дешевый питатель… Я не специалист в этом вопросе, может и другим пригодилась, их на Али сотни.

+

avatar

  • kirich
  • 11 августа 2021, 14:15

Ссылочку бы кинули на достойный на Ваш взгляд дешевый питатель…

Так это зависит от задач, например из недорогих мне понравился DPS8005, но на самом деле через меня их прошло много разных и к примеру мне удобен как RD6006, так и ZXY6005, которые кардинально отличаются между собой в плане управления/индикации.

+

avatar

  • ber3
  • 13 августа 2021, 07:28

Так это зависит от задач, например из недорогих мне понравился DPS8005

а из 50-60в что из недорогих?

+

avatar

  • Skylab
  • 11 августа 2021, 15:58

+

avatar

  • ser
  • 13 августа 2021, 09:24

+

avatar

  • san_q
  • 13 августа 2021, 23:33

А что про такой скажете? FNIRSI DC580

Понравилась статья? Поделить с друзьями:
  • Инструкция по охране труда для водителя автотранспортных средств
  • Холодильник атлант 1990 года выпуска инструкция
  • Хлебопечка tarrington house инструкция на русском книжка скачать
  • Лианозовский парк руководство
  • Great wall hover дизель ремонт руководство по ремонту